SOOPOEN壁挂炉售后维修点查询全国网点
SOOPOEN壁挂炉总部400售后厂售后服务电话号码:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
SOOPOEN壁挂炉专业服务热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
SOOPOEN壁挂炉维修网点寻
SOOPOEN壁挂炉客服售后电话
维修费用透明公开,无隐藏消费,让您放心选择。
SOOPOEN壁挂炉售后电话是多少/全国24小时在线报修400客服中心
SOOPOEN壁挂炉售后服务全国24小时服务电话
盘锦市双台子区、安阳市龙安区、襄阳市谷城县、滨州市邹平市、成都市金堂县、白沙黎族自治县牙叉镇、广西柳州市城中区、忻州市忻府区、酒泉市敦煌市、黔西南普安县
临夏东乡族自治县、本溪市平山区、威海市文登区、长沙市望城区、万宁市礼纪镇、驻马店市正阳县、黄冈市黄梅县、咸阳市长武县、扬州市江都区
东莞市桥头镇、徐州市新沂市、玉溪市通海县、汉中市城固县、泰州市高港区、南充市阆中市、凉山会理市、上海市徐汇区
广西河池市东兰县、抚州市资溪县、马鞍山市当涂县、泰州市海陵区、衡阳市耒阳市
大理剑川县、淮安市金湖县、成都市龙泉驿区、辽源市东丰县、乐东黎族自治县万冲镇、周口市西华县、株洲市醴陵市、内江市市中区、郴州市临武县、菏泽市巨野县
湖州市南浔区、贵阳市开阳县、遵义市播州区、内蒙古呼伦贝尔市陈巴尔虎旗、淮安市洪泽区、滁州市天长市、玉树治多县、广西北海市海城区
淮南市寿县、重庆市潼南区、邵阳市双清区、海南同德县、嘉兴市平湖市、锦州市凌海市、宁夏固原市泾源县
淮北市烈山区、深圳市宝安区、南阳市唐河县、肇庆市鼎湖区、衢州市常山县、海西蒙古族德令哈市、琼海市长坡镇、黄山市休宁县、海口市美兰区、郴州市嘉禾县
洛阳市瀍河回族区、中山市黄圃镇、北京市朝阳区、乐山市夹江县、松原市长岭县、南京市栖霞区、晋城市泽州县、广西百色市德保县、聊城市莘县
怀化市洪江市、临夏和政县、青岛市城阳区、阜阳市颍东区、重庆市大足区、抚州市东乡区、德宏傣族景颇族自治州梁河县
资阳市乐至县、三门峡市湖滨区、中山市港口镇、荆门市京山市、广西北海市铁山港区
郴州市北湖区、吕梁市石楼县、齐齐哈尔市拜泉县、揭阳市惠来县、延安市延长县、天津市宝坻区、温州市洞头区、淮安市淮安区
遵义市余庆县、广西桂林市资源县、玉溪市峨山彝族自治县、宿州市埇桥区、江门市台山市、扬州市江都区、洛阳市洛龙区、天津市河北区
绥化市安达市、甘孜稻城县、茂名市信宜市、临沂市郯城县、揭阳市揭东区
忻州市五台县、漯河市舞阳县、宿州市埇桥区、周口市项城市、开封市杞县、吕梁市方山县、淮北市烈山区、宁夏固原市原州区
永州市冷水滩区、莆田市荔城区、琼海市长坡镇、淮南市大通区、南京市鼓楼区
济宁市微山县、内蒙古乌兰察布市化德县、洛阳市孟津区、成都市锦江区、阿坝藏族羌族自治州茂县、昌江黎族自治县石碌镇
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】