400服务电话:400-1865-909(点击咨询)
德而乐施热水器24小时客服在线
德而乐施热水器厂家客服电话
德而乐施热水器400客服售后各售后服务24小时号码:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
德而乐施热水器官网客服热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
德而乐施热水器全国客服联络站
德而乐施热水器售后全国服务通
维修服务跟踪回访:维修完成后,进行定期跟踪回访,了解设备使用情况和客户满意度。
维修配件库存管理系统:我们建立了完善的配件库存管理系统,确保配件库存充足且有序。
德而乐施热水器24小时解忧站
德而乐施热水器维修服务电话全国服务区域:
荆门市钟祥市、临沂市费县、盘锦市盘山县、天水市甘谷县、大同市天镇县、遵义市绥阳县、玉溪市通海县
黄山市徽州区、楚雄元谋县、漳州市芗城区、嘉兴市海宁市、蚌埠市禹会区、咸阳市兴平市
牡丹江市海林市、延边和龙市、大连市金州区、南平市武夷山市、上海市徐汇区、天津市津南区
泉州市德化县、南昌市南昌县、万宁市后安镇、泸州市龙马潭区、宜昌市伍家岗区、伊春市汤旺县、中山市南区街道、太原市古交市、南昌市东湖区、鹤岗市工农区
赣州市龙南市、安康市岚皋县、上海市宝山区、济宁市任城区、内蒙古鄂尔多斯市乌审旗、莆田市城厢区、永州市双牌县、凉山宁南县、中山市东升镇
萍乡市芦溪县、通化市通化县、黔东南丹寨县、平凉市灵台县、上海市长宁区、上饶市鄱阳县、北京市昌平区、甘南碌曲县
吉安市永丰县、许昌市长葛市、聊城市东昌府区、黄南尖扎县、渭南市蒲城县、昆明市富民县、海南兴海县、邵阳市绥宁县、鄂州市鄂城区
荆州市监利市、牡丹江市绥芬河市、阿坝藏族羌族自治州黑水县、绍兴市诸暨市、揭阳市榕城区、许昌市魏都区
襄阳市襄城区、驻马店市确山县、潍坊市潍城区、中山市三乡镇、黔东南天柱县、文昌市文城镇、宣城市郎溪县、东莞市桥头镇、临高县调楼镇
广西百色市德保县、甘孜甘孜县、十堰市房县、直辖县潜江市、洛阳市老城区
深圳市罗湖区、菏泽市单县、锦州市凌海市、赣州市信丰县、青岛市胶州市、怀化市辰溪县、南昌市西湖区、温州市瓯海区
广西梧州市苍梧县、咸阳市彬州市、白银市景泰县、徐州市睢宁县、临汾市大宁县、佳木斯市前进区
台州市三门县、十堰市郧阳区、荆州市松滋市、阿坝藏族羌族自治州理县、牡丹江市阳明区、宿迁市宿豫区、曲靖市富源县、延边和龙市
德州市禹城市、文昌市锦山镇、海南同德县、陵水黎族自治县提蒙乡、阳泉市郊区、南通市如皋市、益阳市资阳区
丽江市永胜县、临沧市沧源佤族自治县、临夏广河县、陵水黎族自治县群英乡、兰州市永登县、孝感市安陆市、濮阳市范县、果洛甘德县、海东市平安区、焦作市修武县
文山丘北县、临沧市临翔区、咸阳市泾阳县、朔州市朔城区、眉山市彭山区
雅安市名山区、延安市子长市、遵义市正安县、岳阳市平江县、丽水市青田县、武汉市黄陂区、六安市金寨县、绍兴市越城区、双鸭山市尖山区
湛江市吴川市、西安市新城区、济南市章丘区、乐山市沐川县、黔西南兴仁市
广西钦州市灵山县、温州市泰顺县、阳江市阳东区、咸阳市永寿县、甘南玛曲县、成都市简阳市、邵阳市双清区、杭州市西湖区、玉溪市易门县
岳阳市平江县、乐山市市中区、济南市历城区、内蒙古通辽市科尔沁左翼后旗、湘潭市湘潭县、滁州市全椒县、江门市开平市、广西来宾市合山市、宝鸡市眉县
定安县黄竹镇、佛山市三水区、郴州市临武县、驻马店市确山县、达州市通川区、惠州市博罗县、九江市瑞昌市、安庆市迎江区、德阳市罗江区、阜新市细河区
内蒙古鄂尔多斯市乌审旗、济宁市汶上县、衡阳市南岳区、芜湖市弋江区、南充市仪陇县、内江市资中县
宁德市古田县、保山市施甸县、大庆市肇源县、三明市明溪县、绍兴市柯桥区、鞍山市铁西区
菏泽市巨野县、南京市雨花台区、贵阳市乌当区、鄂州市梁子湖区、重庆市奉节县、抚顺市望花区、濮阳市濮阳县
怒江傈僳族自治州福贡县、深圳市龙华区、蚌埠市龙子湖区、重庆市武隆区、玉溪市华宁县、黔东南从江县、成都市大邑县、葫芦岛市兴城市、昆明市五华区
泰安市东平县、内蒙古兴安盟科尔沁右翼中旗、伊春市大箐山县、哈尔滨市松北区、广西来宾市合山市、南通市海门区
凉山布拖县、黔西南望谟县、黄冈市麻城市、三明市建宁县、普洱市景谷傣族彝族自治县、绵阳市三台县
400服务电话:400-1865-909(点击咨询)
德而乐施热水器全国各地区24小时客服中心
德而乐施热水器全国各售后服务点客服号码
德而乐施热水器维修网点全覆盖:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
德而乐施热水器24小时全国统一网点(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
德而乐施热水器客服售后人工电话(全国统一)400受理热线
德而乐施热水器服务电话/(全国统一网点)24小时客服热线
维修服务专属维修顾问,一对一服务:为长期客户提供专属维修顾问服务,提供一对一的维修咨询和解决方案,建立稳定的客户关系。
专业维修建议:根据产品情况,提供专业的维修建议。
德而乐施热水器客服热线速查
德而乐施热水器维修服务电话全国服务区域:
西安市莲湖区、锦州市古塔区、佳木斯市桦南县、东莞市桥头镇、吉安市井冈山市、宜宾市珙县、广西来宾市金秀瑶族自治县、深圳市光明区
合肥市长丰县、庆阳市西峰区、海北海晏县、贵阳市白云区、潍坊市临朐县
广西北海市合浦县、沈阳市康平县、大同市灵丘县、商丘市宁陵县、绵阳市北川羌族自治县、河源市龙川县、三明市清流县、澄迈县大丰镇
湘西州凤凰县、宁波市余姚市、成都市崇州市、直辖县天门市、松原市乾安县、上饶市弋阳县
莆田市荔城区、晋城市沁水县、湛江市徐闻县、广西钦州市钦北区、甘孜炉霍县、重庆市潼南区、七台河市桃山区、合肥市庐江县
太原市阳曲县、怀化市洪江市、大理剑川县、南阳市邓州市、烟台市福山区、铁岭市铁岭县、大同市平城区、白山市靖宇县
内蒙古锡林郭勒盟正镶白旗、宁德市霞浦县、陵水黎族自治县三才镇、中山市五桂山街道、万宁市三更罗镇
广州市白云区、衡阳市耒阳市、琼海市博鳌镇、东莞市万江街道、东营市垦利区
昆明市宜良县、南昌市南昌县、广西桂林市叠彩区、吕梁市文水县、衡阳市祁东县、宁夏吴忠市红寺堡区、朝阳市双塔区、双鸭山市宝清县
玉溪市峨山彝族自治县、东莞市高埗镇、内蒙古鄂尔多斯市东胜区、上海市普陀区、济南市历下区、揭阳市普宁市、宿州市泗县、枣庄市峄城区
广州市黄埔区、恩施州巴东县、咸宁市通山县、渭南市澄城县、漳州市龙文区、常德市石门县
铜仁市沿河土家族自治县、西宁市大通回族土族自治县、大连市沙河口区、内蒙古巴彦淖尔市杭锦后旗、广西桂林市全州县、东方市板桥镇、南通市海安市、东莞市常平镇、果洛玛沁县、朔州市怀仁市
广西贺州市昭平县、梅州市大埔县、郑州市上街区、长春市南关区、中山市南头镇
五指山市毛道、三明市沙县区、广西北海市合浦县、文山马关县、阜阳市界首市、中山市阜沙镇、赣州市龙南市
宜宾市筠连县、玉树称多县、丹东市东港市、河源市连平县、黔东南锦屏县、安康市紫阳县、徐州市云龙区、云浮市云城区、重庆市合川区、牡丹江市穆棱市
宣城市旌德县、晋中市平遥县、遵义市凤冈县、青岛市崂山区、恩施州巴东县、甘南夏河县、上海市徐汇区、北京市平谷区、赣州市赣县区、温州市鹿城区
佳木斯市富锦市、毕节市赫章县、玉溪市新平彝族傣族自治县、凉山宁南县、天津市津南区、中山市南头镇、陇南市成县、张掖市山丹县、长春市二道区、凉山会理市
厦门市翔安区、十堰市竹溪县、内蒙古兴安盟扎赉特旗、鞍山市台安县、淮北市烈山区、信阳市浉河区、武汉市东西湖区、汕尾市城区、曲靖市罗平县
黔西南兴仁市、昭通市镇雄县、广西玉林市容县、广州市花都区、黔东南锦屏县、长沙市浏阳市
丽水市松阳县、甘孜色达县、滨州市博兴县、绥化市安达市、黄山市屯溪区、徐州市邳州市、内蒙古呼和浩特市回民区
重庆市万州区、万宁市龙滚镇、周口市郸城县、天水市甘谷县、营口市老边区、本溪市本溪满族自治县、海南同德县、梅州市梅江区、重庆市秀山县
黄冈市武穴市、榆林市吴堡县、本溪市平山区、嘉兴市嘉善县、广西桂林市龙胜各族自治县
重庆市大渡口区、锦州市太和区、滁州市南谯区、广西梧州市万秀区、潍坊市安丘市、烟台市芝罘区、内蒙古锡林郭勒盟锡林浩特市
成都市龙泉驿区、永州市蓝山县、南京市江宁区、衡阳市祁东县、商洛市商南县、岳阳市岳阳县、重庆市巴南区、白山市江源区、宿州市砀山县
定西市通渭县、黑河市孙吴县、楚雄楚雄市、儋州市南丰镇、松原市乾安县、丹东市凤城市
永州市新田县、临高县加来镇、平顶山市鲁山县、玉溪市新平彝族傣族自治县、儋州市新州镇、淄博市临淄区、内江市东兴区
宁夏吴忠市青铜峡市、内蒙古呼伦贝尔市陈巴尔虎旗、广西桂林市平乐县、曲靖市罗平县、宁夏吴忠市红寺堡区、沈阳市康平县、东莞市石碣镇、丽水市景宁畲族自治县、长沙市浏阳市、南京市六合区
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】