征芒指纹锁总部400售后点电话号码
征芒指纹锁全国24小时各售后热线号码:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
征芒指纹锁总部400售后维修上门维修附近电话(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
征芒指纹锁全国统一服务热线-全国24小时400人工客服热线
征芒指纹锁报修热线客服
客户反馈循环,不断优化服务:我们建立客户反馈循环机制,及时收集并分析客户反馈,不断优化服务流程和质量,提升客户满意度。
征芒指纹锁专业客服热线
征芒指纹锁售后维修电话热线号码
中山市南朗镇、怀化市通道侗族自治县、运城市永济市、咸阳市旬邑县、赣州市石城县、大理宾川县、牡丹江市林口县、吉林市龙潭区
内蒙古巴彦淖尔市五原县、黔南荔波县、武汉市新洲区、广西贵港市港南区、晋中市祁县、邵阳市新邵县、衢州市龙游县、甘孜泸定县、西宁市城西区、襄阳市襄州区
乐东黎族自治县万冲镇、渭南市白水县、辽阳市灯塔市、庆阳市华池县、武汉市汉南区、重庆市合川区
咸宁市嘉鱼县、红河蒙自市、深圳市龙华区、赣州市信丰县、苏州市相城区、安顺市普定县、广西梧州市万秀区、宁夏银川市西夏区、阜阳市界首市、大同市平城区
株洲市茶陵县、福州市马尾区、海东市循化撒拉族自治县、商丘市宁陵县、双鸭山市友谊县、萍乡市安源区、湖州市长兴县、绥化市明水县、兰州市皋兰县
宁夏固原市原州区、儋州市王五镇、鹰潭市月湖区、广西南宁市良庆区、抚顺市新抚区
泰安市肥城市、宁德市霞浦县、大庆市林甸县、黄南河南蒙古族自治县、东莞市东坑镇、衢州市常山县、武威市凉州区
大理鹤庆县、新乡市延津县、深圳市龙岗区、泰州市姜堰区、焦作市温县、安康市镇坪县、昭通市镇雄县、丽江市永胜县、长沙市浏阳市
赣州市上犹县、雅安市荥经县、凉山普格县、渭南市韩城市、晋中市太谷区
铁岭市昌图县、广安市岳池县、北京市怀柔区、丽江市华坪县、广元市昭化区、咸宁市崇阳县、绥化市兰西县、成都市新津区
安庆市迎江区、衢州市衢江区、遵义市正安县、天水市秦安县、洛阳市瀍河回族区、陵水黎族自治县隆广镇、白银市白银区
大连市甘井子区、双鸭山市四方台区、平顶山市石龙区、南昌市安义县、宜春市靖安县、定西市陇西县、大连市庄河市
南充市顺庆区、郑州市登封市、广西河池市东兰县、徐州市睢宁县、绥化市绥棱县、内蒙古鄂尔多斯市杭锦旗、新乡市新乡县、泰安市泰山区、大理永平县、广西贺州市平桂区
肇庆市鼎湖区、大兴安岭地区呼玛县、朝阳市建平县、聊城市茌平区、德阳市中江县、安庆市桐城市
北京市门头沟区、十堰市竹山县、天津市和平区、内蒙古呼伦贝尔市额尔古纳市、宝鸡市扶风县、长春市朝阳区、南平市延平区、琼海市潭门镇
万宁市山根镇、驻马店市汝南县、齐齐哈尔市泰来县、儋州市大成镇、嘉峪关市文殊镇、鸡西市滴道区、达州市万源市、铁岭市开原市
南通市如皋市、西安市莲湖区、天水市麦积区、衡阳市衡山县、定安县雷鸣镇
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】