400服务电话:400-1865-909(点击咨询)
创尔特锅炉服务热线总览
创尔特锅炉400客服维修支持
创尔特锅炉上门维修预约:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
创尔特锅炉官方各24小时售后全国官方客服受理中心(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
创尔特锅炉全国24小时客服热线
创尔特锅炉全国人工售后各地售后服务电话
维修服务老客户专属优惠日,感恩回馈:设立老客户专属优惠日,为老客户提供更多优惠和福利,感恩回馈客户支持。
客户意见箱,倾听客户声音:我们设立客户意见箱,鼓励客户提出宝贵意见和建议,以便我们不断改进服务,满足客户需求。
创尔特锅炉400售后查询网点
创尔特锅炉维修服务电话全国服务区域:
重庆市潼南区、上饶市德兴市、万宁市万城镇、台州市玉环市、赣州市寻乌县
安康市汉阴县、商丘市永城市、内蒙古巴彦淖尔市乌拉特后旗、淮安市金湖县、赣州市龙南市、武汉市青山区、宁波市江北区、白沙黎族自治县牙叉镇、荆州市洪湖市、永州市江永县
雅安市石棉县、宁德市古田县、泰州市兴化市、昆明市盘龙区、鹤岗市向阳区、渭南市韩城市、定安县定城镇、湖州市德清县
大庆市林甸县、驻马店市平舆县、黄冈市黄梅县、黄冈市麻城市、运城市垣曲县、沈阳市和平区
内蒙古通辽市扎鲁特旗、凉山会东县、文昌市公坡镇、信阳市新县、文昌市文教镇、太原市古交市、上饶市铅山县、临沂市蒙阴县
莆田市城厢区、北京市平谷区、上海市奉贤区、赣州市于都县、攀枝花市仁和区、梅州市丰顺县
延安市志丹县、徐州市泉山区、白城市大安市、吉林市船营区、大理云龙县
宜春市高安市、儋州市中和镇、三明市将乐县、东莞市东城街道、东莞市大朗镇、株洲市荷塘区、广西百色市那坡县、通化市二道江区、齐齐哈尔市拜泉县、屯昌县西昌镇
东方市感城镇、昭通市镇雄县、宁夏中卫市海原县、中山市神湾镇、黄冈市团风县、东方市四更镇、内蒙古呼伦贝尔市扎赉诺尔区、黄南泽库县
鹤岗市向阳区、济南市商河县、杭州市上城区、朔州市朔城区、宿迁市沭阳县、咸阳市泾阳县、天水市甘谷县、万宁市后安镇
鞍山市岫岩满族自治县、德州市陵城区、内蒙古乌兰察布市商都县、淮安市淮阴区、抚州市黎川县、马鞍山市花山区、吉安市万安县、嘉兴市秀洲区、黄山市歙县、威海市文登区
鹤岗市兴安区、内蒙古锡林郭勒盟苏尼特左旗、丽江市华坪县、益阳市南县、随州市曾都区
大同市平城区、眉山市青神县、宜春市上高县、商丘市夏邑县、乐山市马边彝族自治县、安顺市西秀区、上海市徐汇区、榆林市绥德县
大庆市大同区、齐齐哈尔市建华区、毕节市金沙县、昌江黎族自治县王下乡、深圳市罗湖区、重庆市秀山县、长治市上党区、合肥市庐江县
盐城市东台市、鞍山市岫岩满族自治县、三明市沙县区、牡丹江市绥芬河市、晋中市榆社县、牡丹江市宁安市
济宁市汶上县、文昌市龙楼镇、东莞市南城街道、娄底市涟源市、临夏永靖县、海北门源回族自治县、遵义市正安县
重庆市大渡口区、锦州市太和区、滁州市南谯区、广西梧州市万秀区、潍坊市安丘市、烟台市芝罘区、内蒙古锡林郭勒盟锡林浩特市
楚雄元谋县、内蒙古通辽市霍林郭勒市、内蒙古乌兰察布市四子王旗、广安市前锋区、衡阳市耒阳市、宜春市铜鼓县、深圳市龙岗区、临汾市蒲县、济南市市中区、湘西州花垣县
广安市邻水县、辽阳市白塔区、资阳市乐至县、邵阳市双清区、恩施州巴东县、泉州市丰泽区、松原市长岭县、牡丹江市穆棱市、毕节市纳雍县
镇江市句容市、汉中市略阳县、黄石市下陆区、安阳市内黄县、红河个旧市、平凉市华亭县
渭南市临渭区、黄石市黄石港区、忻州市神池县、鸡西市恒山区、上海市虹口区、延边汪清县、鞍山市千山区
成都市新津区、盐城市响水县、文山麻栗坡县、渭南市大荔县、定西市通渭县、宜昌市猇亭区、攀枝花市西区、常德市石门县、济南市商河县、临汾市安泽县
陵水黎族自治县新村镇、枣庄市峄城区、凉山雷波县、台州市椒江区、许昌市襄城县、滁州市凤阳县
定安县雷鸣镇、长春市榆树市、漳州市漳浦县、武威市凉州区、娄底市双峰县、屯昌县南吕镇、平顶山市卫东区、达州市大竹县、烟台市福山区、青岛市市北区
宝鸡市太白县、遵义市湄潭县、濮阳市范县、吕梁市文水县、吕梁市汾阳市、保山市施甸县
怀化市通道侗族自治县、广安市邻水县、怀化市辰溪县、东莞市道滘镇、广西河池市都安瑶族自治县、南阳市淅川县、潍坊市青州市
广西柳州市鱼峰区、湘西州永顺县、内蒙古兴安盟科尔沁右翼中旗、安阳市滑县、济宁市泗水县、广西钦州市钦南区、广西南宁市马山县
400服务电话:400-1865-909(点击咨询)
创尔特锅炉24小时全国统一400售后客服热线
创尔特锅炉售后服务全国服务热线
创尔特锅炉售后服务电话全国热线电话:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
创尔特锅炉全天候服务热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
创尔特锅炉24h人工客服在线服务
创尔特锅炉全国24小时故障受理中心
维修过程客户反馈:在维修过程中,我们鼓励客户提供反馈和建议,帮助我们不断改进服务质量。
服务团队在维修过程中,会向您展示故障原因和维修过程,让您清楚了解。
创尔特锅炉24小时全国各客服号码
创尔特锅炉维修服务电话全国服务区域:
阜新市新邱区、乐山市峨边彝族自治县、白城市洮北区、金华市武义县、临高县新盈镇、屯昌县西昌镇、宁波市镇海区
东莞市长安镇、聊城市茌平区、昆明市呈贡区、广西南宁市上林县、白山市抚松县、汕头市潮阳区、内蒙古呼和浩特市土默特左旗、深圳市龙岗区、丽水市松阳县
广西桂林市临桂区、内蒙古呼伦贝尔市扎兰屯市、西安市阎良区、菏泽市单县、牡丹江市爱民区、青岛市李沧区
儋州市光村镇、重庆市黔江区、长治市黎城县、丽江市华坪县、清远市阳山县、齐齐哈尔市昂昂溪区
赣州市瑞金市、杭州市上城区、广西梧州市龙圩区、焦作市武陟县、广西南宁市江南区、上海市长宁区、营口市鲅鱼圈区、上饶市德兴市、海东市平安区、红河开远市
内蒙古通辽市库伦旗、南京市栖霞区、漳州市华安县、天水市张家川回族自治县、重庆市梁平区、昌江黎族自治县十月田镇、吉安市吉州区、儋州市排浦镇、佳木斯市桦南县
延安市吴起县、运城市稷山县、广州市白云区、湖州市德清县、潍坊市寒亭区
牡丹江市宁安市、玉树曲麻莱县、哈尔滨市方正县、临夏和政县、赣州市赣县区、凉山德昌县、深圳市坪山区、台州市路桥区、福州市鼓楼区、邵阳市洞口县
郑州市新密市、太原市杏花岭区、海北刚察县、遵义市余庆县、榆林市神木市、白沙黎族自治县金波乡、大庆市肇源县、红河元阳县
成都市大邑县、东莞市沙田镇、西宁市城中区、宜宾市筠连县、阜阳市颍泉区、通化市集安市、青岛市市北区、淮北市相山区、重庆市潼南区
三亚市海棠区、宣城市绩溪县、济南市槐荫区、黑河市嫩江市、广西南宁市兴宁区、大同市新荣区、南京市高淳区、揭阳市普宁市、常州市钟楼区、大理剑川县
宜昌市猇亭区、太原市古交市、吕梁市柳林县、广西桂林市恭城瑶族自治县、内蒙古阿拉善盟阿拉善左旗、葫芦岛市龙港区、凉山昭觉县、怒江傈僳族自治州福贡县
赣州市寻乌县、遵义市余庆县、江门市蓬江区、深圳市盐田区、苏州市常熟市、大同市平城区、宜昌市长阳土家族自治县、锦州市古塔区、文昌市东郊镇
朔州市应县、内蒙古通辽市奈曼旗、晋中市左权县、咸阳市彬州市、定安县翰林镇、黔西南望谟县、通化市二道江区、庆阳市西峰区、文昌市锦山镇、定安县岭口镇
安阳市殷都区、楚雄元谋县、惠州市博罗县、广西贵港市覃塘区、襄阳市襄城区、东莞市东坑镇、七台河市新兴区、黄冈市浠水县、凉山金阳县
四平市铁东区、杭州市富阳区、黔南龙里县、盘锦市双台子区、泉州市丰泽区、普洱市西盟佤族自治县、陵水黎族自治县光坡镇、澄迈县金江镇
临汾市侯马市、上饶市弋阳县、惠州市博罗县、牡丹江市宁安市、双鸭山市宝清县
丽水市景宁畲族自治县、海南共和县、酒泉市肃北蒙古族自治县、阜阳市颍州区、遵义市正安县
丹东市宽甸满族自治县、忻州市岢岚县、安庆市怀宁县、大同市平城区、果洛玛沁县、葫芦岛市兴城市、内蒙古锡林郭勒盟正蓝旗、枣庄市台儿庄区、三明市明溪县
宣城市绩溪县、鹰潭市余江区、宣城市郎溪县、蚌埠市禹会区、荆州市监利市
广安市广安区、吉安市万安县、内蒙古赤峰市喀喇沁旗、宜春市万载县、大连市长海县
九江市湖口县、周口市商水县、天津市西青区、吕梁市文水县、盐城市响水县、陵水黎族自治县文罗镇
济南市天桥区、宜宾市江安县、上海市徐汇区、黔西南册亨县、聊城市冠县、宜昌市长阳土家族自治县、东莞市石龙镇、儋州市排浦镇、池州市贵池区
宜昌市五峰土家族自治县、黄山市歙县、锦州市北镇市、宁夏石嘴山市惠农区、内蒙古通辽市库伦旗、龙岩市新罗区、龙岩市武平县、定西市漳县
咸阳市礼泉县、常州市钟楼区、蚌埠市怀远县、广西来宾市象州县、宣城市宣州区、黔南瓮安县、湛江市霞山区、南通市海门区
南充市仪陇县、淮安市金湖县、鸡西市恒山区、荆门市掇刀区、东莞市茶山镇、本溪市南芬区、本溪市明山区
铜仁市石阡县、南京市浦口区、聊城市冠县、吉安市遂川县、赣州市大余县
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】