雅若轩指纹锁24小时全国统一售后受理客服中心
雅若轩指纹锁全国报修服务点:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
雅若轩指纹锁各市24小时服务中心(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
雅若轩指纹锁售后服务部电话
雅若轩指纹锁全国人工售后维修服务维修电话
维修配件更换记录:在维修过程中,我们会详细记录更换的配件信息,包括配件名称、型号、生产日期等,以备客户查询。
雅若轩指纹锁总部售后客服中心服务电话
雅若轩指纹锁全国预约热线咨询
济南市天桥区、阜新市海州区、汉中市留坝县、上饶市广信区、铁岭市银州区、东莞市麻涌镇
广西防城港市上思县、临沂市临沭县、铜仁市沿河土家族自治县、眉山市洪雅县、襄阳市保康县、榆林市绥德县、重庆市巫溪县
蚌埠市龙子湖区、南平市光泽县、扬州市高邮市、六盘水市六枝特区、福州市永泰县、万宁市三更罗镇、珠海市金湾区、大同市左云县
湛江市遂溪县、周口市淮阳区、九江市濂溪区、内蒙古通辽市开鲁县、濮阳市南乐县、海口市琼山区、郑州市金水区、菏泽市巨野县、晋中市祁县、宁德市古田县
昆明市西山区、鹤岗市东山区、鞍山市海城市、松原市扶余市、内蒙古呼伦贝尔市额尔古纳市
吉安市遂川县、咸阳市三原县、渭南市韩城市、长春市双阳区、上海市松江区、长春市九台区、龙岩市上杭县
十堰市郧阳区、太原市清徐县、宜春市宜丰县、盐城市滨海县、成都市龙泉驿区、汕尾市海丰县、东莞市凤岗镇、荆门市钟祥市、大兴安岭地区呼中区、东莞市高埗镇
潍坊市坊子区、广西贵港市港南区、庆阳市庆城县、宁夏吴忠市盐池县、上饶市广信区
果洛玛沁县、镇江市句容市、晋中市介休市、恩施州咸丰县、宝鸡市陇县、延边敦化市
广州市白云区、白沙黎族自治县打安镇、宜昌市宜都市、长治市武乡县、阜新市彰武县、汕头市龙湖区
儋州市雅星镇、新乡市辉县市、大同市云州区、屯昌县南坤镇、襄阳市老河口市、临沂市兰陵县、广西钦州市浦北县、郴州市宜章县、九江市瑞昌市、鸡西市麻山区
南京市秦淮区、延安市甘泉县、白城市洮南市、延边汪清县、盐城市大丰区、西安市蓝田县、东方市大田镇、昆明市安宁市、盘锦市盘山县、上海市静安区
沈阳市浑南区、临沧市凤庆县、平顶山市鲁山县、漯河市临颍县、昭通市彝良县、内蒙古赤峰市巴林右旗、淄博市周村区、襄阳市保康县
宁夏吴忠市同心县、宜宾市江安县、襄阳市襄城区、商洛市商南县、新乡市卫辉市、宜昌市兴山县
大兴安岭地区呼玛县、南阳市淅川县、大庆市大同区、儋州市雅星镇、韶关市新丰县、攀枝花市盐边县、开封市通许县、牡丹江市东安区、临汾市尧都区
鞍山市铁东区、丽水市云和县、三门峡市陕州区、梅州市平远县、南阳市南召县、湖州市吴兴区、淮北市濉溪县、阜阳市颍州区
乐山市沙湾区、万宁市万城镇、新乡市原阳县、西宁市湟中区、阳泉市盂县、荆州市洪湖市、内蒙古呼和浩特市土默特左旗、广西河池市凤山县、菏泽市成武县
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】