爱特空调全国客服24小时统一受理中心
爱特空调全国24小时统一400客服热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
爱特空调全国维修服务售后热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
爱特空调400客服售后全国24小时服务电话
爱特空调全国人工售后统一24小时400客服中心
设备保养计划:根据您的设备使用情况和维修历史,我们会为您制定个性化的设备保养计划,帮助您延长设备使用寿命。
爱特空调售后统一平台
爱特空调专修热线
鸡西市滴道区、宿州市砀山县、武汉市东西湖区、广西河池市宜州区、亳州市涡阳县、鸡西市虎林市
宣城市宣州区、遵义市仁怀市、辽源市西安区、大同市广灵县、益阳市桃江县、宜昌市兴山县、重庆市巴南区
南通市海安市、眉山市东坡区、泸州市古蔺县、永州市江永县、海西蒙古族都兰县、临高县波莲镇
张家界市武陵源区、淄博市淄川区、三明市建宁县、中山市东凤镇、四平市双辽市、扬州市江都区、长春市农安县
眉山市彭山区、五指山市毛阳、黄石市黄石港区、济南市槐荫区、陇南市文县、海南同德县、凉山越西县、鹰潭市余江区、鹤壁市山城区、洛阳市孟津区
果洛达日县、菏泽市定陶区、汉中市南郑区、孝感市大悟县、海北海晏县、黄冈市麻城市、平顶山市舞钢市、无锡市江阴市、普洱市澜沧拉祜族自治县、厦门市同安区
洛阳市汝阳县、上饶市余干县、红河弥勒市、六盘水市钟山区、长春市农安县、娄底市新化县、肇庆市端州区
内蒙古呼和浩特市赛罕区、张掖市肃南裕固族自治县、张掖市民乐县、南昌市西湖区、阿坝藏族羌族自治州阿坝县、十堰市房县、陇南市礼县、黑河市五大连池市、盐城市阜宁县、内蒙古兴安盟阿尔山市
阿坝藏族羌族自治州阿坝县、汉中市佛坪县、忻州市河曲县、内蒙古锡林郭勒盟苏尼特右旗、凉山布拖县
湛江市赤坎区、哈尔滨市道里区、保亭黎族苗族自治县保城镇、内蒙古鄂尔多斯市鄂托克旗、镇江市润州区、临高县南宝镇、杭州市西湖区、昭通市大关县
中山市阜沙镇、莆田市荔城区、内蒙古乌兰察布市四子王旗、广西钦州市钦南区、濮阳市华龙区、重庆市黔江区、内蒙古巴彦淖尔市乌拉特前旗
佳木斯市抚远市、临沂市蒙阴县、遵义市湄潭县、平顶山市石龙区、中山市民众镇、漳州市云霄县、中山市五桂山街道、乐山市峨眉山市、韶关市始兴县
宜春市万载县、赣州市兴国县、烟台市芝罘区、定安县定城镇、晋中市祁县、重庆市彭水苗族土家族自治县、佳木斯市桦南县、内蒙古乌兰察布市兴和县
淮北市濉溪县、通化市柳河县、南京市栖霞区、连云港市灌南县、渭南市富平县、东营市垦利区、三沙市南沙区、吕梁市汾阳市
商丘市梁园区、榆林市定边县、北京市顺义区、曲靖市陆良县、德州市武城县
哈尔滨市平房区、天津市武清区、杭州市上城区、东莞市茶山镇、普洱市景东彝族自治县、常州市金坛区、漳州市漳浦县、朝阳市凌源市、汕尾市陆丰市、乐东黎族自治县佛罗镇
永州市道县、滨州市沾化区、安康市石泉县、阜新市彰武县、四平市铁西区、怀化市靖州苗族侗族自治县、大理鹤庆县
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】