400服务电话:400-1865-909(点击咨询)
出极保险柜全国售后24小时客服热线
出极保险柜维修全国服务热线
出极保险柜品牌400热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
出极保险柜售后客服热线服务台(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
出极保险柜热线一站式服务
出极保险柜400售后无忧
快速上门维修:预约后24小时内上门,解决您的燃眉之急。
维修优惠券,定期发放维修优惠券,降低您的维修成本。
出极保险柜全国官网服务电话
出极保险柜维修服务电话全国服务区域:
重庆市铜梁区、郴州市宜章县、黄山市黟县、大兴安岭地区加格达奇区、大庆市肇州县、绥化市安达市、齐齐哈尔市碾子山区
宁夏银川市贺兰县、广西桂林市临桂区、襄阳市南漳县、黔东南台江县、株洲市炎陵县、衡阳市珠晖区、沈阳市沈河区
资阳市雁江区、鞍山市铁东区、宁波市余姚市、大理鹤庆县、文昌市锦山镇、沈阳市和平区、泸州市叙永县、凉山美姑县、商丘市永城市
商洛市丹凤县、东莞市南城街道、儋州市雅星镇、常州市新北区、潍坊市寒亭区、内江市市中区、云浮市云城区、枣庄市山亭区
天津市滨海新区、新乡市封丘县、泰安市东平县、广元市苍溪县、德宏傣族景颇族自治州陇川县、连云港市灌云县、恩施州咸丰县、成都市蒲江县、赣州市崇义县
龙岩市武平县、平顶山市鲁山县、内蒙古鄂尔多斯市准格尔旗、郑州市巩义市、孝感市孝南区、琼海市潭门镇、温州市鹿城区、黔东南岑巩县、遂宁市蓬溪县、濮阳市范县
黔东南雷山县、甘南夏河县、澄迈县永发镇、襄阳市樊城区、抚州市宜黄县、成都市新津区、广元市旺苍县
西双版纳勐腊县、白银市靖远县、宜昌市宜都市、长沙市望城区、临汾市浮山县、哈尔滨市尚志市、九江市彭泽县、鹤岗市南山区
内蒙古赤峰市喀喇沁旗、伊春市大箐山县、宜宾市翠屏区、辽阳市文圣区、福州市连江县、海东市互助土族自治县、中山市沙溪镇、临汾市浮山县
中山市神湾镇、上饶市德兴市、兰州市七里河区、连云港市东海县、哈尔滨市松北区、广西钦州市钦北区
宣城市旌德县、佛山市三水区、鹤岗市东山区、万宁市南桥镇、上海市嘉定区、大兴安岭地区松岭区
珠海市香洲区、毕节市织金县、儋州市那大镇、六安市金寨县、普洱市江城哈尼族彝族自治县、屯昌县坡心镇、安顺市西秀区、嘉兴市桐乡市、雅安市芦山县、上海市黄浦区
宜昌市伍家岗区、吉安市吉水县、周口市沈丘县、大连市长海县、茂名市信宜市、南平市光泽县、西宁市城北区、临汾市汾西县、黔东南天柱县
内蒙古乌兰察布市集宁区、嘉兴市桐乡市、白山市浑江区、郑州市荥阳市、德阳市绵竹市、泉州市永春县、蚌埠市淮上区、上海市徐汇区
景德镇市昌江区、永州市蓝山县、重庆市云阳县、东莞市东城街道、北京市顺义区、连云港市海州区、凉山普格县、长治市屯留区
九江市彭泽县、河源市龙川县、阜阳市颍上县、长春市德惠市、红河金平苗族瑶族傣族自治县、甘孜九龙县
濮阳市南乐县、陇南市成县、乐东黎族自治县尖峰镇、曲靖市会泽县、天津市南开区、临汾市隰县、台州市椒江区
长沙市长沙县、三明市沙县区、绵阳市安州区、重庆市石柱土家族自治县、昭通市巧家县、衢州市龙游县、合肥市庐阳区、郑州市二七区
大同市新荣区、海北刚察县、佳木斯市桦川县、临沂市莒南县、淮北市杜集区、内蒙古兴安盟阿尔山市
德宏傣族景颇族自治州陇川县、陵水黎族自治县光坡镇、清远市连州市、内蒙古呼伦贝尔市牙克石市、景德镇市昌江区
襄阳市保康县、朔州市右玉县、济南市章丘区、铜仁市玉屏侗族自治县、金华市磐安县、甘孜白玉县
南阳市桐柏县、郴州市北湖区、衢州市江山市、咸宁市咸安区、吕梁市临县、菏泽市郓城县、长沙市长沙县、日照市五莲县
广西玉林市容县、安康市旬阳市、嘉兴市嘉善县、资阳市雁江区、太原市万柏林区、漳州市龙文区、西宁市城东区、南京市高淳区、忻州市定襄县
荆门市东宝区、聊城市冠县、梅州市平远县、广西梧州市蒙山县、怀化市鹤城区、葫芦岛市绥中县、抚州市崇仁县、株洲市芦淞区、蚌埠市禹会区、保亭黎族苗族自治县什玲
湛江市徐闻县、天津市蓟州区、佛山市顺德区、凉山越西县、台州市临海市、鄂州市梁子湖区、西安市碑林区、吉林市昌邑区
南京市建邺区、西双版纳勐海县、滨州市博兴县、安庆市宿松县、咸阳市乾县、牡丹江市海林市、成都市彭州市
广西梧州市万秀区、淮安市淮安区、铁岭市西丰县、潍坊市昌邑市、衡阳市南岳区、重庆市巫山县
400服务电话:400-1865-909(点击咨询)
出极保险柜故障应急处理
出极保险柜快修热线
出极保险柜400售后保障:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
出极保险柜24小时服务热线全国热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
出极保险柜售后维修24小时热线电话预约
出极保险柜故障报修中心
维修流程透明公开,让您清晰了解每一步进展,确保服务满意度。
维修服务维修后性能检测,确保完好:维修完成后,对家电进行全面性能检测,确保各项功能恢复正常,让客户满意。
出极保险柜保维热线客服
出极保险柜维修服务电话全国服务区域:
黔东南岑巩县、琼海市万泉镇、金昌市金川区、湖州市吴兴区、淮北市相山区、苏州市虎丘区、佳木斯市同江市
广安市武胜县、渭南市白水县、松原市乾安县、琼海市长坡镇、长沙市芙蓉区、常州市新北区、朔州市平鲁区
凉山美姑县、信阳市淮滨县、龙岩市上杭县、九江市湖口县、南充市营山县、茂名市电白区、延边珲春市、广西南宁市青秀区
梅州市兴宁市、白城市通榆县、孝感市孝南区、吕梁市汾阳市、宣城市宣州区
六盘水市盘州市、昭通市昭阳区、西宁市城东区、安康市宁陕县、忻州市河曲县、白沙黎族自治县打安镇、海南共和县、长治市潞城区
厦门市集美区、滨州市阳信县、中山市横栏镇、孝感市大悟县、朔州市朔城区、马鞍山市花山区
琼海市中原镇、内蒙古乌海市海勃湾区、重庆市大足区、内蒙古阿拉善盟阿拉善左旗、内蒙古巴彦淖尔市乌拉特中旗、南京市溧水区、平凉市灵台县、绵阳市三台县、白沙黎族自治县荣邦乡
昆明市五华区、荆州市松滋市、广西桂林市资源县、南充市高坪区、常德市武陵区、赣州市章贡区、金华市东阳市、白银市靖远县、沈阳市沈河区
晋中市榆社县、三明市大田县、潍坊市诸城市、佳木斯市前进区、内蒙古乌兰察布市凉城县
临汾市洪洞县、广西柳州市鱼峰区、中山市古镇镇、聊城市茌平区、铜陵市铜官区、嘉兴市海宁市、武汉市江岸区、漳州市诏安县、温州市苍南县、玉溪市新平彝族傣族自治县
丽江市玉龙纳西族自治县、运城市万荣县、中山市石岐街道、黔南都匀市、北京市石景山区、湖州市安吉县、岳阳市临湘市、吉林市磐石市、普洱市宁洱哈尼族彝族自治县、天津市河北区
眉山市青神县、阜阳市颍东区、广西桂林市灵川县、大理漾濞彝族自治县、内蒙古包头市昆都仑区、昆明市东川区、岳阳市岳阳县、滁州市天长市、五指山市毛道、宁夏中卫市中宁县
金华市东阳市、五指山市水满、定安县岭口镇、贵阳市清镇市、东莞市东城街道
哈尔滨市依兰县、鸡西市鸡东县、文山马关县、文昌市文城镇、南平市建瓯市、三明市三元区、东莞市东城街道、广西来宾市忻城县
大同市新荣区、镇江市丹阳市、本溪市南芬区、兰州市榆中县、南阳市社旗县、果洛甘德县、长沙市芙蓉区、定安县龙门镇、临高县新盈镇
德州市禹城市、杭州市拱墅区、永州市双牌县、延安市洛川县、张掖市临泽县、铜仁市德江县、大同市天镇县、上饶市德兴市、广西桂林市叠彩区
汕头市澄海区、伊春市友好区、台州市路桥区、内蒙古呼伦贝尔市牙克石市、长春市绿园区、万宁市山根镇、吕梁市临县、东莞市樟木头镇、吉安市遂川县
五指山市通什、安顺市普定县、海南同德县、抚州市东乡区、菏泽市郓城县、咸宁市通山县、重庆市沙坪坝区、梅州市平远县、北京市平谷区、澄迈县加乐镇
昆明市禄劝彝族苗族自治县、伊春市嘉荫县、内蒙古呼和浩特市托克托县、攀枝花市西区、重庆市长寿区、宁德市福安市、上海市静安区、淮安市淮阴区、淄博市高青县、永州市新田县
鹤壁市淇县、洛阳市老城区、阜新市细河区、宜春市靖安县、宜宾市筠连县、清远市连山壮族瑶族自治县、广西北海市银海区、红河建水县、丽水市遂昌县
黄山市歙县、牡丹江市阳明区、内江市隆昌市、信阳市潢川县、扬州市仪征市、迪庆香格里拉市、内江市东兴区、宜昌市夷陵区、东莞市企石镇、南阳市卧龙区
绵阳市盐亭县、文昌市翁田镇、渭南市潼关县、长春市南关区、滨州市滨城区、鹤岗市兴山区
武威市凉州区、葫芦岛市南票区、烟台市栖霞市、大兴安岭地区漠河市、韶关市翁源县、温州市鹿城区、邵阳市双清区
酒泉市金塔县、临沂市费县、南通市海安市、阜阳市临泉县、自贡市荣县、泉州市惠安县、株洲市天元区、上海市长宁区
大兴安岭地区呼玛县、朔州市应县、武威市天祝藏族自治县、商丘市永城市、安康市宁陕县、天津市静海区、哈尔滨市双城区、南阳市方城县、东莞市洪梅镇、天津市和平区
抚顺市清原满族自治县、临汾市古县、黔南贵定县、南阳市内乡县、深圳市福田区、东莞市万江街道
凉山金阳县、鄂州市华容区、广元市朝天区、长治市武乡县、佛山市高明区、齐齐哈尔市克东县
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】