铸诚防盗门客服热线全天候服务
铸诚防盗门售后维修电话号码是多少全国:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
铸诚防盗门400人工在线咨询热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
铸诚防盗门售后维修电话24小时服务全市网点
铸诚防盗门400全国售后援助热线
高品质服务承诺:我们承诺提供高品质服务,让您满意为止。
铸诚防盗门厂家总部售后客服全国服务电话
铸诚防盗门维修电话24小时服务热线
天水市张家川回族自治县、运城市河津市、潍坊市高密市、凉山昭觉县、荆门市京山市、大同市云州区、内蒙古锡林郭勒盟镶黄旗、昭通市永善县、平顶山市新华区
汉中市洋县、丽水市遂昌县、荆州市沙市区、张掖市山丹县、广西钦州市钦北区、内蒙古呼和浩特市玉泉区、牡丹江市绥芬河市、德州市庆云县
白银市平川区、永州市宁远县、临沂市费县、江门市台山市、内蒙古赤峰市松山区、曲靖市马龙区、咸阳市旬邑县、九江市彭泽县、平凉市华亭县
果洛玛沁县、邵阳市邵东市、东莞市石碣镇、广西梧州市岑溪市、三明市宁化县
广西贵港市平南县、贵阳市开阳县、文昌市文城镇、亳州市涡阳县、随州市曾都区、湘西州龙山县、玉溪市江川区、内蒙古乌兰察布市兴和县
厦门市思明区、南昌市南昌县、黄冈市团风县、遂宁市大英县、广西防城港市港口区
温州市瑞安市、济宁市汶上县、济宁市微山县、上海市静安区、凉山西昌市、三明市三元区、双鸭山市岭东区、合肥市庐江县、菏泽市巨野县、株洲市石峰区
内蒙古鄂尔多斯市准格尔旗、雅安市荥经县、潍坊市高密市、广西百色市平果市、凉山喜德县、广安市邻水县、北京市房山区、长治市平顺县、内蒙古鄂尔多斯市鄂托克前旗
焦作市孟州市、大庆市萨尔图区、随州市曾都区、洛阳市老城区、梅州市丰顺县
鸡西市麻山区、哈尔滨市松北区、贵阳市花溪区、湘西州凤凰县、甘孜雅江县、东方市大田镇、儋州市王五镇、长春市双阳区
黔东南雷山县、广西柳州市柳江区、东莞市石排镇、铜仁市沿河土家族自治县、南阳市南召县
屯昌县枫木镇、大连市庄河市、阿坝藏族羌族自治州理县、乐东黎族自治县利国镇、牡丹江市穆棱市
澄迈县加乐镇、乐东黎族自治县九所镇、铁岭市清河区、成都市郫都区、广西桂林市灵川县、成都市青白江区、曲靖市富源县
广安市华蓥市、太原市尖草坪区、清远市阳山县、鸡西市麻山区、昌江黎族自治县海尾镇
果洛玛多县、黔东南从江县、广西钦州市钦南区、西安市临潼区、阿坝藏族羌族自治州壤塘县、焦作市沁阳市、泉州市丰泽区、长治市屯留区、遂宁市大英县、株洲市天元区
白城市洮南市、德阳市绵竹市、定西市临洮县、广西桂林市恭城瑶族自治县、海北门源回族自治县、绥化市海伦市、延边龙井市、广西南宁市宾阳县、上海市杨浦区
广西钦州市灵山县、威海市文登区、三明市明溪县、绵阳市江油市、广西来宾市合山市
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】