柯士尼保险柜热线查询
柯士尼保险柜全国快速维护:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
柯士尼保险柜售后服务维修网点查询热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
柯士尼保险柜维修服务全国维修电话全国统一
柯士尼保险柜客服热线平台
维修配件优惠活动:我们会不定期推出维修配件优惠活动,让您在维修过程中享受更多实惠。
柯士尼保险柜本地服务热线
柯士尼保险柜400全国售后全国24小时客服
本溪市桓仁满族自治县、铜仁市江口县、周口市川汇区、临汾市隰县、广州市番禺区、聊城市临清市
赣州市兴国县、牡丹江市爱民区、衢州市柯城区、广西桂林市灌阳县、张家界市慈利县、昆明市嵩明县、十堰市郧阳区
晋城市沁水县、福州市闽侯县、榆林市米脂县、内蒙古包头市白云鄂博矿区、达州市开江县、九江市瑞昌市、青岛市城阳区、吕梁市孝义市、金华市婺城区
安庆市太湖县、红河弥勒市、广西北海市银海区、庆阳市庆城县、信阳市罗山县、雅安市名山区、陵水黎族自治县本号镇
咸宁市赤壁市、广西柳州市三江侗族自治县、铜仁市德江县、咸阳市淳化县、六盘水市钟山区、绥化市北林区、万宁市北大镇
重庆市大渡口区、株洲市炎陵县、南阳市镇平县、琼海市中原镇、枣庄市滕州市、广西玉林市北流市、济宁市梁山县、安庆市太湖县、澄迈县桥头镇、杭州市滨江区
晋中市昔阳县、自贡市荣县、中山市小榄镇、忻州市代县、景德镇市昌江区、河源市源城区、北京市丰台区
孝感市应城市、深圳市宝安区、东莞市望牛墩镇、晋城市沁水县、鹰潭市贵溪市、天津市北辰区
河源市龙川县、甘南卓尼县、德阳市绵竹市、池州市石台县、常德市石门县、商丘市永城市、松原市宁江区、焦作市修武县、驻马店市正阳县、雅安市天全县
宜春市宜丰县、自贡市荣县、白城市大安市、宜昌市伍家岗区、玉溪市易门县、衡阳市常宁市、天水市秦州区、鸡西市虎林市、保山市龙陵县
西安市高陵区、内蒙古呼和浩特市和林格尔县、儋州市新州镇、白山市浑江区、郑州市惠济区、汕头市潮南区、吉安市新干县、铜仁市松桃苗族自治县、平顶山市宝丰县、万宁市东澳镇
广西北海市银海区、内蒙古乌兰察布市丰镇市、东营市东营区、澄迈县大丰镇、大同市天镇县、宜昌市夷陵区、佳木斯市郊区
内蒙古鄂尔多斯市康巴什区、黄冈市麻城市、晋城市陵川县、丽水市莲都区、咸阳市三原县、内蒙古呼伦贝尔市满洲里市、甘南合作市、成都市金牛区、三亚市天涯区、驻马店市确山县
毕节市赫章县、抚顺市新宾满族自治县、重庆市秀山县、信阳市固始县、长治市潞城区、益阳市安化县
惠州市惠阳区、海南同德县、江门市台山市、九江市共青城市、景德镇市浮梁县、丽水市云和县、武汉市硚口区
珠海市金湾区、黔南惠水县、儋州市王五镇、西宁市湟中区、东莞市万江街道、广西梧州市藤县、德宏傣族景颇族自治州盈江县、七台河市新兴区、遵义市绥阳县、武汉市江岸区
揭阳市普宁市、温州市文成县、汕头市南澳县、本溪市南芬区、临沂市河东区
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】