林格豪保险柜厂家总部售后24小时热线电话号码
林格豪保险柜官方各全国统一售后24小时客服电话:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
林格豪保险柜售后维修电话24小时服务热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
林格豪保险柜厂家维修服务总部电话
林格豪保险柜全国各售后服务24小时号码
服务热线直拨:无需经过繁琐的转接流程,直接拨打服务热线即可联系我们。
林格豪保险柜400客服中心
林格豪保险柜24小时上门电话全市网点
厦门市翔安区、十堰市竹溪县、内蒙古兴安盟扎赉特旗、鞍山市台安县、淮北市烈山区、信阳市浉河区、武汉市东西湖区、汕尾市城区、曲靖市罗平县
商丘市睢阳区、大兴安岭地区漠河市、保亭黎族苗族自治县什玲、本溪市明山区、晋中市榆社县
太原市尖草坪区、临夏康乐县、吉林市磐石市、漳州市龙文区、晋中市昔阳县
保山市腾冲市、嘉兴市海盐县、杭州市萧山区、三亚市海棠区、北京市西城区、合肥市庐阳区、广西北海市海城区、成都市蒲江县、大庆市大同区
阜新市彰武县、安阳市北关区、齐齐哈尔市泰来县、辽阳市文圣区、鹰潭市月湖区
青岛市城阳区、太原市杏花岭区、忻州市岢岚县、济南市平阴县、双鸭山市四方台区、安庆市大观区、内蒙古锡林郭勒盟太仆寺旗、陵水黎族自治县黎安镇、东莞市洪梅镇、延边和龙市
淮北市相山区、万宁市三更罗镇、陇南市西和县、济宁市嘉祥县、宁夏中卫市海原县、佛山市南海区、铜川市耀州区、遵义市绥阳县、福州市台江区、上海市静安区
鞍山市铁东区、琼海市会山镇、中山市民众镇、重庆市巫山县、常德市石门县、菏泽市定陶区、内江市隆昌市
榆林市米脂县、文昌市抱罗镇、临沂市临沭县、内蒙古包头市固阳县、长沙市开福区、周口市太康县、景德镇市珠山区、广西桂林市永福县、文昌市文教镇
德州市乐陵市、邵阳市新宁县、广西百色市靖西市、广西北海市海城区、宁夏中卫市海原县、温州市泰顺县、忻州市保德县
邵阳市绥宁县、榆林市吴堡县、上海市浦东新区、临沂市沂南县、贵阳市修文县、聊城市莘县
榆林市神木市、临沂市兰陵县、日照市五莲县、铜仁市江口县、德阳市广汉市、襄阳市老河口市、荆门市京山市、肇庆市德庆县
宁波市奉化区、遂宁市射洪市、金昌市金川区、郴州市临武县、内江市市中区、三亚市天涯区、安康市汉滨区、邵阳市隆回县
南阳市唐河县、大理大理市、内蒙古赤峰市林西县、汉中市汉台区、红河红河县、广西贺州市昭平县
广西河池市巴马瑶族自治县、甘南临潭县、内蒙古乌兰察布市化德县、洛阳市西工区、太原市晋源区、葫芦岛市兴城市
海西蒙古族茫崖市、宜宾市屏山县、锦州市义县、红河开远市、渭南市临渭区、襄阳市襄城区、大庆市让胡路区
烟台市蓬莱区、芜湖市镜湖区、南昌市青山湖区、韶关市翁源县、宣城市绩溪县、泰安市岱岳区、甘孜康定市、济宁市泗水县
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】