欧帝乐锁防盗门售后维修电话(全国/各区)400统一报修电话
欧帝乐锁防盗门400客服售后维修服务电话号码:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
欧帝乐锁防盗门维修现场勘查(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
欧帝乐锁防盗门上门服务热线
欧帝乐锁防盗门故障速修热线
推出会员制度,会员可享受优先服务、积分兑换等特权。
欧帝乐锁防盗门售后维修厂家联系电话今日客服热线
欧帝乐锁防盗门400全国售后维修全国报修
凉山喜德县、忻州市偏关县、宁夏固原市彭阳县、广元市苍溪县、济南市莱芜区、宁德市柘荣县、南通市崇川区
大庆市红岗区、丹东市东港市、合肥市庐阳区、河源市紫金县、广州市南沙区、渭南市合阳县、襄阳市保康县、四平市铁西区
广元市旺苍县、南京市秦淮区、西宁市城东区、东莞市大朗镇、焦作市博爱县、定西市岷县、泸州市合江县、果洛久治县
黄石市黄石港区、徐州市泉山区、德阳市广汉市、扬州市高邮市、河源市和平县、汉中市略阳县、北京市顺义区、北京市丰台区、青岛市市南区
内蒙古赤峰市松山区、吕梁市文水县、泰州市高港区、屯昌县枫木镇、通化市柳河县、临汾市蒲县、昆明市禄劝彝族苗族自治县、长春市朝阳区、安庆市桐城市、曲靖市会泽县
临沂市临沭县、内蒙古巴彦淖尔市乌拉特后旗、嘉兴市嘉善县、朔州市怀仁市、昆明市晋宁区、迪庆香格里拉市、自贡市沿滩区、荆州市石首市、潍坊市昌邑市、郑州市惠济区
南平市建瓯市、张家界市武陵源区、乐东黎族自治县千家镇、曲靖市师宗县、黑河市孙吴县、双鸭山市友谊县、苏州市太仓市、驻马店市平舆县
渭南市临渭区、中山市小榄镇、宁波市镇海区、成都市武侯区、潍坊市青州市、西安市雁塔区、中山市港口镇、玉溪市红塔区、文昌市龙楼镇
南昌市南昌县、广西贵港市港南区、西安市灞桥区、陵水黎族自治县提蒙乡、北京市东城区、渭南市大荔县、西安市新城区
葫芦岛市连山区、潍坊市潍城区、上海市杨浦区、陵水黎族自治县本号镇、淄博市临淄区、甘南夏河县、宣城市宣州区、沈阳市铁西区
东莞市长安镇、齐齐哈尔市建华区、肇庆市四会市、益阳市赫山区、芜湖市湾沚区、十堰市郧阳区
蚌埠市固镇县、武汉市江夏区、安康市宁陕县、安庆市大观区、遵义市仁怀市
内蒙古呼伦贝尔市阿荣旗、长治市沁源县、宁波市宁海县、烟台市牟平区、德宏傣族景颇族自治州瑞丽市、潍坊市寿光市、保山市施甸县、阜阳市颍上县
宁夏银川市灵武市、鸡西市城子河区、毕节市纳雍县、四平市梨树县、东方市八所镇
中山市民众镇、池州市贵池区、菏泽市成武县、十堰市郧阳区、大同市新荣区、临汾市翼城县
洛阳市栾川县、忻州市神池县、杭州市西湖区、许昌市建安区、汉中市勉县、宝鸡市陇县、安顺市平坝区、中山市三角镇、怀化市靖州苗族侗族自治县
资阳市雁江区、双鸭山市尖山区、庆阳市合水县、郴州市桂阳县、吉安市井冈山市、丽水市云和县、临夏康乐县、天津市宝坻区
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】