山亿太阳能400售后求助热线
山亿太阳能24小时售后服务电话号码全市网点:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
山亿太阳能24小时售后服务维修热线电话全市网点(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
山亿太阳能全国人工售后服务热线售后号码查询
山亿太阳能电话24小时热线
维修服务紧急故障快速响应机制,及时救援:建立紧急故障快速响应机制,确保在客户遇到紧急故障时,能够迅速响应并提供及时救援服务。
山亿太阳能全国统一24小时售后服务热线号码
山亿太阳能24h全国服务热线
马鞍山市和县、贵阳市息烽县、榆林市榆阳区、定安县龙门镇、黄石市铁山区、珠海市香洲区、屯昌县坡心镇、内江市东兴区
淮安市淮阴区、宁波市象山县、常德市津市市、许昌市襄城县、福州市福清市、甘孜炉霍县、绍兴市上虞区、南通市启东市
吉安市万安县、辽阳市太子河区、福州市鼓楼区、嘉兴市秀洲区、西安市灞桥区、淮北市相山区、韶关市仁化县、鸡西市麻山区、天津市和平区
齐齐哈尔市富裕县、韶关市乐昌市、眉山市彭山区、抚州市乐安县、黔南瓮安县、黔南独山县、蚌埠市禹会区、渭南市临渭区
菏泽市鄄城县、东方市感城镇、广西贵港市桂平市、济宁市曲阜市、孝感市大悟县、苏州市姑苏区、温州市乐清市、广西来宾市金秀瑶族自治县、白城市镇赉县
澄迈县仁兴镇、大庆市萨尔图区、琼海市博鳌镇、德宏傣族景颇族自治州陇川县、屯昌县西昌镇、大庆市龙凤区、南阳市桐柏县、楚雄大姚县、荆门市沙洋县
万宁市山根镇、邵阳市大祥区、吉安市吉安县、赣州市信丰县、重庆市渝中区、延安市黄龙县、安庆市望江县、南通市通州区
定安县翰林镇、焦作市解放区、延安市富县、广安市华蓥市、驻马店市正阳县、朝阳市朝阳县、内蒙古阿拉善盟额济纳旗、汕头市濠江区、汉中市镇巴县、大庆市大同区
开封市鼓楼区、阿坝藏族羌族自治州金川县、武汉市江岸区、新乡市封丘县、吕梁市方山县、宿州市砀山县、宁夏石嘴山市大武口区、南通市如皋市、泰州市海陵区、定安县龙门镇
福州市平潭县、漳州市龙海区、焦作市解放区、台州市临海市、绥化市兰西县、永州市冷水滩区、常州市溧阳市、南京市栖霞区、丽水市莲都区、南京市建邺区
十堰市郧阳区、双鸭山市岭东区、九江市德安县、焦作市孟州市、常德市汉寿县
文昌市东郊镇、抚州市金溪县、枣庄市峄城区、大庆市肇州县、广西柳州市鱼峰区、内蒙古阿拉善盟阿拉善左旗、德州市武城县
潍坊市高密市、岳阳市汨罗市、吕梁市交城县、抚顺市新抚区、黔东南台江县、南充市嘉陵区、荆州市沙市区
陵水黎族自治县三才镇、惠州市博罗县、安庆市宜秀区、渭南市临渭区、齐齐哈尔市富裕县、果洛久治县、佳木斯市抚远市、成都市金堂县、玉树称多县
大同市浑源县、西宁市湟中区、济宁市鱼台县、四平市铁东区、双鸭山市宝山区、舟山市嵊泗县、淮安市淮阴区
广西钦州市灵山县、内蒙古赤峰市克什克腾旗、十堰市郧西县、广西防城港市防城区、平顶山市鲁山县、丹东市宽甸满族自治县
兰州市城关区、驻马店市上蔡县、咸阳市乾县、宁夏固原市原州区、内蒙古呼伦贝尔市满洲里市、铁岭市清河区
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】