PUTZF智能锁24小时厂家统一热线400受理客服中心
PUTZF智能锁全国24小时客服电话号码:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
PUTZF智能锁全国官方客服热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
PUTZF智能锁客服售后维修电话
PUTZF智能锁全国售后维修服务热线网点查询
维修服务定期技术交流会,共享经验:组织定期技术交流会,邀请行业专家及技师分享维修经验和技术心得,共同提升服务水平。
PUTZF智能锁售后服务各中心维修
PUTZF智能锁专业修复
玉树称多县、株洲市芦淞区、临高县新盈镇、兰州市城关区、晋中市榆次区、淮北市濉溪县、黄石市下陆区
内蒙古阿拉善盟阿拉善左旗、大理云龙县、沈阳市浑南区、江门市蓬江区、昆明市嵩明县、株洲市醴陵市、南充市西充县
乐东黎族自治县黄流镇、泉州市金门县、安庆市潜山市、鹤壁市鹤山区、北京市通州区、昭通市大关县、株洲市攸县、龙岩市武平县、宁夏中卫市中宁县
重庆市巫山县、湘西州凤凰县、威海市环翠区、怀化市洪江市、丽水市云和县、内蒙古巴彦淖尔市临河区、朝阳市建平县
鸡西市鸡东县、抚顺市新抚区、延安市黄陵县、商洛市商州区、六安市金安区
盘锦市双台子区、大理弥渡县、儋州市王五镇、上海市崇明区、朔州市应县、三明市宁化县
内蒙古鄂尔多斯市乌审旗、黄冈市团风县、黔东南锦屏县、亳州市涡阳县、东莞市南城街道、成都市彭州市、延安市黄龙县
北京市通州区、中山市三乡镇、果洛玛沁县、滁州市琅琊区、贵阳市南明区、延安市安塞区、贵阳市清镇市、庆阳市庆城县
甘孜理塘县、鸡西市滴道区、海东市循化撒拉族自治县、无锡市梁溪区、宁夏银川市金凤区、晋城市高平市、十堰市丹江口市、临汾市大宁县、德宏傣族景颇族自治州瑞丽市、德阳市旌阳区
天津市静海区、周口市项城市、沈阳市皇姑区、阿坝藏族羌族自治州汶川县、郴州市安仁县、广安市武胜县、文昌市龙楼镇
临高县调楼镇、文山文山市、珠海市金湾区、潍坊市高密市、广西贺州市钟山县、湘西州凤凰县、沈阳市苏家屯区、甘南舟曲县、西宁市城中区
玉树称多县、昆明市西山区、开封市兰考县、常德市汉寿县、定西市安定区、广西南宁市马山县、吉安市吉州区、大理大理市
广西来宾市兴宾区、潍坊市寿光市、临沧市凤庆县、荆州市沙市区、三门峡市卢氏县、汉中市宁强县
铁岭市昌图县、漳州市长泰区、鹤岗市南山区、宁夏固原市隆德县、迪庆维西傈僳族自治县、汉中市留坝县
昭通市绥江县、广州市海珠区、临高县和舍镇、重庆市合川区、海口市龙华区、丽江市玉龙纳西族自治县、牡丹江市爱民区、牡丹江市穆棱市、邵阳市洞口县
中山市大涌镇、澄迈县永发镇、德宏傣族景颇族自治州瑞丽市、南通市启东市、内蒙古呼伦贝尔市扎赉诺尔区、乐山市马边彝族自治县、九江市瑞昌市
迪庆香格里拉市、红河个旧市、杭州市萧山区、朝阳市凌源市、重庆市沙坪坝区、阳江市阳西县、广西百色市右江区
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】