400服务电话:400-1865-909(点击咨询)
微娜指纹锁全天热线
微娜指纹锁24小时人工400电话/专业快速响应
微娜指纹锁维修24小时服务:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
微娜指纹锁全国客服汇总(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
微娜指纹锁24小时人工服务电话全国统一
微娜指纹锁400咨询平台
技术共享,共同进步:我们鼓励技师之间的技术共享和交流,共同学习新技能、新方法,推动整个团队的共同进步。
维修配件质保查询:在我们的系统中,您可以随时查询已更换配件的质保期限和质保状态。
微娜指纹锁维修24小时上门服务电话全市网点
微娜指纹锁维修服务电话全国服务区域:
昌江黎族自治县乌烈镇、宁德市福安市、郴州市安仁县、大兴安岭地区加格达奇区、北京市丰台区、岳阳市君山区、晋城市泽州县、宜昌市宜都市、楚雄大姚县、宿迁市泗阳县
内蒙古赤峰市松山区、吕梁市文水县、泰州市高港区、屯昌县枫木镇、通化市柳河县、临汾市蒲县、昆明市禄劝彝族苗族自治县、长春市朝阳区、安庆市桐城市、曲靖市会泽县
忻州市静乐县、昭通市水富市、内蒙古鄂尔多斯市鄂托克前旗、泸州市叙永县、泰安市岱岳区、恩施州利川市
苏州市常熟市、南昌市青云谱区、上饶市玉山县、济南市历城区、洛阳市洛宁县、乐山市金口河区
内蒙古巴彦淖尔市杭锦后旗、西安市雁塔区、重庆市长寿区、泸州市龙马潭区、淮安市涟水县
恩施州巴东县、孝感市孝南区、齐齐哈尔市昂昂溪区、泸州市纳溪区、文山砚山县、延边安图县、淮北市相山区、长治市潞城区
新余市分宜县、台州市天台县、茂名市电白区、自贡市富顺县、通化市柳河县、赣州市崇义县
达州市宣汉县、中山市南头镇、九江市彭泽县、上海市金山区、朝阳市朝阳县、白城市洮北区、临汾市大宁县、甘孜德格县
海口市秀英区、广西南宁市西乡塘区、临沂市兰山区、黔南福泉市、乐山市夹江县、咸阳市渭城区、德州市德城区、永州市冷水滩区、长治市黎城县、武威市天祝藏族自治县
牡丹江市西安区、昌江黎族自治县海尾镇、东营市垦利区、玉树玉树市、洛阳市嵩县、酒泉市肃北蒙古族自治县、泉州市洛江区
佛山市南海区、南充市嘉陵区、上海市杨浦区、海东市平安区、芜湖市弋江区、松原市乾安县、商丘市夏邑县、焦作市沁阳市、温州市洞头区、广西桂林市永福县
肇庆市端州区、毕节市大方县、梅州市大埔县、遵义市桐梓县、衢州市常山县、琼海市大路镇、湘潭市岳塘区
宁夏吴忠市青铜峡市、天水市清水县、重庆市荣昌区、宁德市屏南县、渭南市大荔县、湖州市长兴县、临夏临夏市、焦作市武陟县
十堰市张湾区、白沙黎族自治县邦溪镇、乐山市马边彝族自治县、晋中市祁县、白沙黎族自治县金波乡、怀化市新晃侗族自治县、连云港市东海县、苏州市姑苏区、内蒙古乌海市海勃湾区、沈阳市辽中区
盐城市大丰区、滨州市滨城区、延边图们市、遂宁市蓬溪县、红河个旧市、东莞市南城街道、绍兴市新昌县、聊城市东阿县
广安市华蓥市、齐齐哈尔市克东县、乐山市五通桥区、内蒙古赤峰市克什克腾旗、衡阳市祁东县、七台河市茄子河区、平凉市华亭县、保山市昌宁县、双鸭山市友谊县
陵水黎族自治县隆广镇、甘孜色达县、张掖市临泽县、广西桂林市永福县、东莞市高埗镇、广西贺州市钟山县、阿坝藏族羌族自治州理县
保亭黎族苗族自治县什玲、吉安市峡江县、黄冈市麻城市、武威市古浪县、广西百色市凌云县、甘孜得荣县、东莞市清溪镇
绵阳市三台县、遂宁市射洪市、重庆市永川区、洛阳市新安县、巴中市平昌县、湘潭市岳塘区、凉山会东县、衡阳市衡东县、广西崇左市宁明县、嘉峪关市峪泉镇
宜宾市屏山县、宁波市余姚市、荆门市东宝区、六安市裕安区、合肥市蜀山区
普洱市宁洱哈尼族彝族自治县、南通市海安市、临汾市蒲县、上海市宝山区、三明市宁化县、佛山市禅城区、韶关市新丰县、商丘市睢县
广西玉林市博白县、咸宁市通城县、黄山市黄山区、西宁市湟中区、甘孜泸定县、毕节市大方县、伊春市汤旺县、昭通市镇雄县、内蒙古鄂尔多斯市乌审旗、新乡市长垣市
杭州市滨江区、内蒙古通辽市开鲁县、淮安市涟水县、临高县博厚镇、重庆市北碚区、太原市阳曲县、滁州市全椒县、延边安图县
广安市岳池县、忻州市保德县、上饶市德兴市、铜仁市印江县、东莞市道滘镇、吉林市丰满区、安康市镇坪县
郴州市嘉禾县、东莞市大朗镇、湘潭市湘潭县、重庆市石柱土家族自治县、葫芦岛市建昌县
揭阳市揭东区、乐东黎族自治县莺歌海镇、南平市光泽县、松原市扶余市、商洛市商南县、南京市六合区、果洛玛多县、邵阳市绥宁县、扬州市江都区
本溪市明山区、宜昌市宜都市、上海市宝山区、荆州市洪湖市、内蒙古巴彦淖尔市乌拉特后旗、葫芦岛市兴城市
400服务电话:400-1865-909(点击咨询)
微娜指纹锁统一售后客服
微娜指纹锁维修预约平台
微娜指纹锁全国各地售后服务电话全国:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
微娜指纹锁维服热线查询(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
微娜指纹锁品牌快修热线
微娜指纹锁总部400售后总部电话
维修配件真伪验证服务满意度调查:我们对配件真伪验证服务进行满意度调查,收集客户反馈,不断优化服务。
维修服务在线预约评价,即时反馈:提供在线预约评价功能,客户可在服务完成后即时评价,帮助我们及时收集反馈。
微娜指纹锁维修点报修电话查询
微娜指纹锁维修服务电话全国服务区域:
株洲市石峰区、宣城市广德市、德宏傣族景颇族自治州盈江县、广元市剑阁县、延安市安塞区、儋州市王五镇、南阳市方城县、中山市小榄镇、黄石市铁山区、九江市都昌县
乐山市沙湾区、锦州市北镇市、上海市浦东新区、黔南三都水族自治县、沈阳市康平县、广西桂林市灌阳县、金华市义乌市、榆林市米脂县、兰州市城关区
内蒙古赤峰市宁城县、咸阳市泾阳县、永州市蓝山县、绵阳市盐亭县、开封市杞县、曲靖市麒麟区
青岛市即墨区、阜新市细河区、丹东市宽甸满族自治县、广西柳州市城中区、黔南独山县、广西钦州市灵山县
金昌市永昌县、内蒙古鄂尔多斯市鄂托克旗、济南市钢城区、铜仁市沿河土家族自治县、黔南瓮安县、西安市周至县、广安市武胜县、普洱市墨江哈尼族自治县
台州市临海市、重庆市奉节县、广元市青川县、甘孜雅江县、内蒙古阿拉善盟阿拉善左旗、南京市栖霞区、徐州市鼓楼区、凉山甘洛县、临高县新盈镇
吕梁市中阳县、文昌市锦山镇、哈尔滨市双城区、万宁市和乐镇、沈阳市辽中区
大兴安岭地区加格达奇区、重庆市潼南区、天津市南开区、黄南同仁市、忻州市代县、沈阳市沈北新区
宿迁市泗阳县、广西来宾市合山市、延安市延长县、上海市崇明区、天水市甘谷县
西宁市湟源县、中山市南区街道、宁夏固原市彭阳县、驻马店市泌阳县、武汉市汉南区、延边珲春市、吉林市永吉县、衢州市开化县、洛阳市汝阳县、衡阳市雁峰区
太原市娄烦县、丽水市莲都区、临夏康乐县、商丘市睢阳区、运城市平陆县、南昌市新建区、定安县岭口镇
忻州市忻府区、杭州市江干区、杭州市临安区、文山文山市、鹰潭市余江区
上海市金山区、永州市蓝山县、鞍山市千山区、昆明市盘龙区、日照市莒县、南京市江宁区
天津市红桥区、襄阳市谷城县、临夏永靖县、东莞市谢岗镇、周口市鹿邑县
天水市秦安县、重庆市永川区、肇庆市怀集县、玉树囊谦县、长沙市天心区、三明市泰宁县、儋州市大成镇、南阳市内乡县
滁州市天长市、十堰市房县、临沂市沂水县、泰州市靖江市、平凉市灵台县、平凉市泾川县、四平市公主岭市、郴州市汝城县、芜湖市镜湖区、永州市零陵区
阜阳市颍东区、宜春市上高县、菏泽市东明县、黔南罗甸县、孝感市孝昌县、太原市娄烦县、红河绿春县、鸡西市滴道区、扬州市江都区、天水市秦州区
吉林市龙潭区、通化市二道江区、宝鸡市渭滨区、南昌市南昌县、广西玉林市福绵区、黄石市西塞山区
马鞍山市含山县、海南同德县、广安市岳池县、济宁市微山县、清远市清城区、通化市通化县、景德镇市昌江区
六安市舒城县、泸州市泸县、陇南市成县、临汾市古县、广西崇左市凭祥市、东莞市茶山镇、十堰市房县
湘潭市湘乡市、漳州市长泰区、南阳市淅川县、广西河池市宜州区、楚雄禄丰市、广西梧州市苍梧县
文昌市东郊镇、常州市溧阳市、莆田市仙游县、德宏傣族景颇族自治州芒市、苏州市相城区、辽源市龙山区
凉山木里藏族自治县、湛江市吴川市、广西玉林市兴业县、庆阳市西峰区、德宏傣族景颇族自治州芒市、泰安市东平县、楚雄牟定县
抚州市临川区、宿迁市宿城区、连云港市东海县、衡阳市衡阳县、滨州市博兴县
常德市武陵区、广西百色市德保县、重庆市石柱土家族自治县、沈阳市大东区、信阳市光山县、丽水市景宁畲族自治县、昌江黎族自治县乌烈镇、白山市浑江区、龙岩市漳平市、吉安市永新县
永州市道县、黔东南锦屏县、杭州市桐庐县、遵义市赤水市、潍坊市寿光市、昭通市绥江县、锦州市北镇市、焦作市解放区、甘孜甘孜县、陵水黎族自治县英州镇
五指山市南圣、通化市通化县、重庆市奉节县、三亚市天涯区、鸡西市虎林市
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】