400服务电话:400-1865-909(点击咨询)
上斐保险柜快速维修服务热线
上斐保险柜全国400总部报修网点
上斐保险柜全国售后服务中心官方电话:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
上斐保险柜24小时热线平台(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
上斐保险柜400全国售后维修客服热线24小时电话
上斐保险柜400维修点服务热线
维修服务绿色环保维修方案,节能减排:在维修过程中,采用绿色环保的维修方案,如使用低能耗工具、减少废弃物等,助力节能减排。
维修服务绿色维修技术,环保节能:采用绿色维修技术,减少维修过程中的能耗和污染,推动环保节能理念在维修服务中的实践。
上斐保险柜维修电话_400客服全天在线统一报修中心
上斐保险柜维修服务电话全国服务区域:
吉安市庐陵新区、南充市阆中市、芜湖市鸠江区、重庆市綦江区、淄博市淄川区、广西崇左市大新县、中山市港口镇、本溪市南芬区、郑州市登封市
晋中市昔阳县、赣州市于都县、成都市崇州市、广西百色市右江区、深圳市盐田区、广西柳州市城中区、忻州市保德县、东营市东营区、长沙市天心区
万宁市后安镇、盘锦市兴隆台区、内蒙古赤峰市宁城县、晋中市灵石县、定西市岷县、漯河市召陵区、哈尔滨市巴彦县、济南市章丘区、焦作市山阳区
迪庆香格里拉市、达州市达川区、黔南三都水族自治县、上海市杨浦区、张掖市山丹县、资阳市乐至县
平顶山市湛河区、滁州市来安县、哈尔滨市松北区、铜陵市枞阳县、淮北市烈山区、定安县龙河镇、广西柳州市鹿寨县
孝感市云梦县、宿迁市沭阳县、延边安图县、上海市虹口区、菏泽市单县
南平市光泽县、黔东南榕江县、怀化市靖州苗族侗族自治县、江门市开平市、合肥市肥东县、平凉市灵台县、榆林市府谷县、广州市从化区、淮北市濉溪县
济宁市微山县、万宁市万城镇、洛阳市西工区、荆州市江陵县、天水市武山县、内蒙古巴彦淖尔市磴口县
太原市小店区、白山市浑江区、邵阳市隆回县、临汾市侯马市、威海市乳山市、威海市荣成市、张掖市临泽县、临夏广河县、南京市建邺区、雅安市名山区
苏州市吴江区、广元市利州区、运城市盐湖区、长治市平顺县、许昌市长葛市、双鸭山市尖山区
葫芦岛市建昌县、阜新市细河区、丽水市遂昌县、黑河市嫩江市、兰州市安宁区、内蒙古兴安盟突泉县
昌江黎族自治县七叉镇、朝阳市龙城区、南昌市东湖区、宣城市绩溪县、海北刚察县、西双版纳勐腊县
东莞市石排镇、安顺市西秀区、广西河池市巴马瑶族自治县、周口市西华县、延边珲春市、吕梁市汾阳市
马鞍山市花山区、昆明市呈贡区、湛江市徐闻县、沈阳市和平区、庆阳市华池县
吉林市桦甸市、迪庆维西傈僳族自治县、遵义市余庆县、庆阳市西峰区、北京市丰台区、黄冈市罗田县、温州市瓯海区、阜新市海州区、上海市杨浦区、绵阳市涪城区
赣州市瑞金市、绍兴市柯桥区、天津市东丽区、焦作市博爱县、阜新市海州区、商丘市睢阳区、重庆市长寿区、滁州市天长市、临沂市兰陵县、松原市长岭县
广西桂林市龙胜各族自治县、贵阳市南明区、达州市万源市、朔州市山阴县、北京市东城区、东莞市虎门镇、澄迈县文儒镇、聊城市临清市
张掖市肃南裕固族自治县、开封市尉氏县、甘孜康定市、肇庆市封开县、铜仁市思南县、黔南荔波县、南平市邵武市、内蒙古巴彦淖尔市乌拉特后旗
成都市大邑县、日照市东港区、泰州市高港区、中山市坦洲镇、绵阳市江油市、丽水市缙云县、沈阳市大东区、德宏傣族景颇族自治州陇川县、贵阳市白云区
扬州市邗江区、东方市三家镇、驻马店市泌阳县、达州市万源市、酒泉市阿克塞哈萨克族自治县、十堰市竹溪县、北京市丰台区
衢州市龙游县、东莞市道滘镇、酒泉市敦煌市、广西柳州市三江侗族自治县、聊城市高唐县、青岛市平度市、广西南宁市良庆区、云浮市新兴县、广西来宾市兴宾区
郴州市嘉禾县、东莞市大朗镇、湘潭市湘潭县、重庆市石柱土家族自治县、葫芦岛市建昌县
景德镇市昌江区、永州市蓝山县、重庆市云阳县、东莞市东城街道、北京市顺义区、连云港市海州区、凉山普格县、长治市屯留区
三门峡市渑池县、永州市江永县、赣州市兴国县、汉中市宁强县、天津市红桥区、东方市感城镇、内蒙古呼伦贝尔市陈巴尔虎旗、上海市青浦区、海东市乐都区
甘南玛曲县、鄂州市鄂城区、上海市奉贤区、株洲市天元区、齐齐哈尔市富拉尔基区、内蒙古乌兰察布市丰镇市、中山市三乡镇、三门峡市灵宝市
内蒙古鄂尔多斯市鄂托克前旗、资阳市乐至县、九江市德安县、景德镇市浮梁县、漳州市龙海区、深圳市福田区、衢州市衢江区
周口市西华县、郑州市登封市、内蒙古通辽市科尔沁区、宝鸡市岐山县、黄山市黄山区、宜宾市屏山县、阜新市彰武县、益阳市沅江市、吉安市万安县
400服务电话:400-1865-909(点击咨询)
上斐保险柜24小时专业维护
上斐保险柜维修服务电话总部24小时400服务热线
上斐保险柜客服热线全国统一24小时400服务中心:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
上斐保险柜厂家售后服务部(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
上斐保险柜客服预约网点号码
上斐保险柜全国售后维修专线
客户满意度调查:定期进行客户满意度调查,以持续改进服务。
维修服务智能家居系统集成服务,智能互联:为客户提供智能家居系统集成服务,将家电与智能设备无缝连接,实现智能家居的便捷控制。
上斐保险柜维修电话(全国/客服)维修点电话号码
上斐保险柜维修服务电话全国服务区域:
宁德市霞浦县、青岛市崂山区、定安县龙门镇、阿坝藏族羌族自治州茂县、济宁市曲阜市、南充市顺庆区、西双版纳勐海县
贵阳市息烽县、镇江市京口区、泉州市洛江区、临汾市隰县、哈尔滨市南岗区、朔州市平鲁区、湛江市赤坎区
白银市平川区、福州市仓山区、运城市河津市、榆林市府谷县、晋城市阳城县
大连市金州区、长沙市天心区、潍坊市寒亭区、德州市德城区、中山市南头镇、宣城市郎溪县、深圳市坪山区、红河蒙自市、铁岭市西丰县、广西南宁市宾阳县
内蒙古通辽市扎鲁特旗、盐城市响水县、海南兴海县、眉山市东坡区、大同市浑源县、新乡市牧野区、玉溪市易门县、贵阳市修文县、北京市平谷区、安庆市宿松县
凉山金阳县、深圳市盐田区、齐齐哈尔市碾子山区、咸阳市永寿县、驻马店市正阳县、安康市石泉县、广西来宾市合山市
大同市天镇县、内蒙古呼伦贝尔市牙克石市、辽阳市宏伟区、黔南长顺县、玉树称多县、焦作市中站区、娄底市新化县、甘南夏河县
万宁市大茂镇、朝阳市北票市、双鸭山市尖山区、常德市武陵区、六盘水市盘州市、宁夏银川市灵武市、潍坊市昌乐县、张掖市肃南裕固族自治县
阜阳市颍州区、东莞市洪梅镇、鹤壁市淇滨区、广州市荔湾区、万宁市礼纪镇、丽水市景宁畲族自治县、儋州市新州镇、鹰潭市贵溪市
三门峡市义马市、菏泽市曹县、昌江黎族自治县十月田镇、内蒙古赤峰市克什克腾旗、广西贺州市富川瑶族自治县、广元市朝天区、遵义市习水县、定西市漳县
郑州市登封市、广西梧州市蒙山县、德州市乐陵市、江门市鹤山市、铜川市耀州区、大理洱源县、黔东南丹寨县
宁夏固原市西吉县、赣州市赣县区、济南市天桥区、七台河市新兴区、舟山市嵊泗县、内蒙古通辽市科尔沁左翼中旗、重庆市巴南区
淄博市张店区、衢州市开化县、琼海市塔洋镇、汕头市潮南区、河源市连平县、巴中市巴州区
聊城市临清市、抚顺市抚顺县、南昌市青山湖区、淄博市高青县、长春市榆树市、泸州市江阳区、广西北海市银海区
韶关市浈江区、广西玉林市玉州区、白银市平川区、宝鸡市麟游县、武汉市新洲区、咸宁市嘉鱼县
铜仁市万山区、兰州市七里河区、内蒙古通辽市扎鲁特旗、德州市宁津县、三明市将乐县、聊城市冠县、佳木斯市抚远市
郑州市巩义市、资阳市安岳县、衡阳市耒阳市、吉安市万安县、南阳市南召县、葫芦岛市兴城市、安阳市文峰区、铁岭市铁岭县
玉溪市江川区、甘孜丹巴县、万宁市万城镇、杭州市淳安县、佳木斯市汤原县
怒江傈僳族自治州福贡县、苏州市太仓市、锦州市古塔区、内蒙古包头市固阳县、宁夏吴忠市盐池县、六安市叶集区
佳木斯市富锦市、毕节市赫章县、玉溪市新平彝族傣族自治县、凉山宁南县、天津市津南区、中山市南头镇、陇南市成县、张掖市山丹县、长春市二道区、凉山会理市
成都市崇州市、普洱市西盟佤族自治县、北京市延庆区、甘孜新龙县、阳泉市城区、红河建水县、哈尔滨市南岗区、大兴安岭地区塔河县、伊春市丰林县、安庆市桐城市
陇南市宕昌县、六盘水市六枝特区、商洛市商州区、大连市中山区、遵义市桐梓县、宝鸡市渭滨区、临汾市大宁县、广西钦州市浦北县
怀化市洪江市、阳江市江城区、海口市琼山区、锦州市凌海市、海口市美兰区、宜春市袁州区、丽水市景宁畲族自治县
德州市禹城市、宁德市周宁县、天津市红桥区、伊春市汤旺县、海东市平安区、临夏广河县、商丘市虞城县
孝感市大悟县、运城市夏县、中山市东升镇、锦州市太和区、安阳市殷都区、三门峡市义马市、绥化市肇东市、吕梁市兴县、无锡市梁溪区、佳木斯市抚远市
巴中市恩阳区、广西梧州市岑溪市、洛阳市偃师区、怀化市芷江侗族自治县、漳州市芗城区、铁岭市开原市
太原市阳曲县、宜春市奉新县、朝阳市建平县、昌江黎族自治县海尾镇、中山市民众镇、清远市清新区、临汾市隰县、广西玉林市博白县、酒泉市阿克塞哈萨克族自治县、郴州市资兴市
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】