400服务电话:400-1865-909(点击咨询)
卡植欧保险柜全天候服务热线
卡植欧保险柜总部400售后厂售后服务电话号码
卡植欧保险柜售后服务全国24小时400受理电话:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
卡植欧保险柜全国统一服务网点电话查询(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
卡植欧保险柜24小时人工客服热线
卡植欧保险柜全国统一400服务电话
维修服务售后跟踪服务,确保满意度:维修服务完成后,进行售后跟踪服务,了解客户使用情况和满意度,确保客户长期满意。
维修服务维修后回访,确保满意:维修完成后,进行回访服务,了解客户对维修效果的满意度,确保客户真正满意。
卡植欧保险柜400全国客服24H服务电话
卡植欧保险柜维修服务电话全国服务区域:
乐山市马边彝族自治县、济南市长清区、黄冈市罗田县、忻州市繁峙县、广西崇左市天等县、梅州市大埔县、天津市静海区、焦作市中站区
陇南市徽县、黄冈市红安县、大同市新荣区、泉州市泉港区、庆阳市西峰区、邵阳市北塔区、嘉兴市秀洲区
普洱市江城哈尼族彝族自治县、广安市华蓥市、怀化市新晃侗族自治县、咸阳市兴平市、池州市青阳县、延安市甘泉县、襄阳市樊城区、成都市邛崃市、兰州市安宁区、吉安市泰和县
广西梧州市长洲区、萍乡市湘东区、宜昌市长阳土家族自治县、广西北海市银海区、直辖县天门市
韶关市武江区、文昌市龙楼镇、惠州市龙门县、邵阳市双清区、绥化市绥棱县
泸州市纳溪区、黔南平塘县、湘西州永顺县、广安市岳池县、黔东南剑河县、广西来宾市象州县、温州市洞头区、陵水黎族自治县群英乡
大理剑川县、盐城市东台市、鹤岗市萝北县、文昌市公坡镇、重庆市荣昌区、乐山市夹江县、上海市杨浦区
天津市红桥区、襄阳市谷城县、临夏永靖县、东莞市谢岗镇、周口市鹿邑县
朔州市平鲁区、甘孜德格县、梅州市丰顺县、昭通市威信县、广西梧州市龙圩区、阜新市新邱区、茂名市高州市
阜新市清河门区、宜昌市远安县、文昌市会文镇、铁岭市开原市、齐齐哈尔市铁锋区、东莞市长安镇
三门峡市湖滨区、郴州市嘉禾县、广西百色市田阳区、重庆市武隆区、长治市上党区、黄山市黟县、商洛市镇安县、凉山美姑县
滨州市无棣县、阿坝藏族羌族自治州汶川县、成都市邛崃市、南平市浦城县、大庆市肇源县、驻马店市西平县
南昌市西湖区、大连市瓦房店市、陇南市两当县、万宁市三更罗镇、湖州市长兴县、丽水市庆元县、黔西南晴隆县、宿迁市宿城区、内蒙古鄂尔多斯市伊金霍洛旗
内蒙古阿拉善盟额济纳旗、吉安市永新县、临沧市永德县、辽阳市辽阳县、乐山市峨边彝族自治县、宿州市埇桥区、茂名市电白区
昆明市禄劝彝族苗族自治县、果洛玛沁县、毕节市七星关区、上海市松江区、九江市永修县、惠州市惠东县
内蒙古巴彦淖尔市临河区、烟台市莱阳市、曲靖市罗平县、内蒙古鄂尔多斯市康巴什区、怀化市辰溪县、中山市中山港街道、铜陵市枞阳县、东莞市厚街镇
渭南市白水县、肇庆市德庆县、衢州市柯城区、滁州市天长市、白沙黎族自治县阜龙乡、延边安图县
广西桂林市资源县、白银市平川区、临汾市蒲县、保亭黎族苗族自治县什玲、辽阳市弓长岭区、定安县龙河镇、内蒙古赤峰市林西县、长春市宽城区
常德市鼎城区、黔南荔波县、澄迈县金江镇、乐东黎族自治县九所镇、双鸭山市宝山区、汕尾市陆丰市、开封市龙亭区、毕节市赫章县
运城市盐湖区、成都市青羊区、雅安市宝兴县、铁岭市清河区、永州市双牌县、马鞍山市雨山区、长春市双阳区
大同市浑源县、西宁市湟中区、济宁市鱼台县、四平市铁东区、双鸭山市宝山区、舟山市嵊泗县、淮安市淮阴区
玉溪市江川区、洛阳市嵩县、甘南玛曲县、东方市板桥镇、怀化市新晃侗族自治县、徐州市丰县、天水市武山县、内蒙古乌兰察布市集宁区、抚州市金溪县
无锡市惠山区、邵阳市隆回县、焦作市修武县、蚌埠市蚌山区、泰安市泰山区、台州市黄岩区、鹤壁市鹤山区、绵阳市涪城区、泉州市洛江区、天水市麦积区
运城市盐湖区、儋州市新州镇、襄阳市老河口市、咸阳市武功县、无锡市新吴区、内蒙古乌兰察布市卓资县、徐州市沛县
驻马店市上蔡县、内蒙古乌海市海南区、大庆市龙凤区、南昌市进贤县、南阳市镇平县、丹东市宽甸满族自治县、广西梧州市龙圩区、甘孜德格县、宁夏固原市泾源县
宁夏银川市永宁县、南阳市宛城区、宝鸡市陇县、庆阳市宁县、海东市民和回族土族自治县、青岛市平度市
广西梧州市万秀区、天水市武山县、三明市明溪县、长沙市浏阳市、永州市冷水滩区、大兴安岭地区塔河县、德阳市什邡市、黑河市北安市、沈阳市康平县
400服务电话:400-1865-909(点击咨询)
卡植欧保险柜全天候守护热线
卡植欧保险柜400客服售后电话24小时上门电话
卡植欧保险柜客服专线服务台:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
卡植欧保险柜客服报修通道(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
卡植欧保险柜全国售后服务网点查询
卡植欧保险柜全国人工售后电话24h在线客服报修
我们承诺,所有维修服务均提供环保维修方案,减少对环境的影响。
维修服务客户意见箱,广开言路:在服务现场设置客户意见箱,鼓励客户提出宝贵意见和建议,促进服务不断完善。
卡植欧保险柜24小时400服务热线电话
卡植欧保险柜维修服务电话全国服务区域:
宜昌市秭归县、文昌市抱罗镇、新乡市辉县市、普洱市思茅区、赣州市会昌县
铜仁市思南县、中山市坦洲镇、长治市壶关县、澄迈县福山镇、玉溪市澄江市、阳江市江城区
扬州市邗江区、温州市永嘉县、泰安市岱岳区、常德市武陵区、内蒙古乌海市海勃湾区、重庆市綦江区、盐城市响水县、东莞市寮步镇、中山市南头镇、白沙黎族自治县南开乡
安康市汉阴县、黔东南天柱县、日照市五莲县、琼海市大路镇、湘西州吉首市
上海市徐汇区、荆州市洪湖市、迪庆维西傈僳族自治县、宿迁市沭阳县、金华市义乌市、儋州市那大镇、晋中市灵石县
济南市平阴县、佳木斯市桦川县、上饶市铅山县、昆明市石林彝族自治县、洛阳市宜阳县、南通市启东市
株洲市茶陵县、南阳市唐河县、雅安市名山区、梅州市兴宁市、郑州市巩义市、大庆市让胡路区、西安市高陵区
天津市和平区、重庆市北碚区、三门峡市卢氏县、大庆市林甸县、湘西州凤凰县、芜湖市繁昌区、乐山市井研县、黔东南凯里市、衢州市衢江区、宁夏银川市灵武市
广元市旺苍县、广西北海市海城区、德州市陵城区、宝鸡市凤县、澄迈县永发镇、哈尔滨市呼兰区、迪庆维西傈僳族自治县、宁夏吴忠市青铜峡市、芜湖市鸠江区、营口市西市区
牡丹江市海林市、延边和龙市、大连市金州区、南平市武夷山市、上海市徐汇区、天津市津南区
大连市西岗区、张家界市武陵源区、深圳市罗湖区、乐山市马边彝族自治县、淮北市烈山区、鸡西市密山市、甘孜稻城县
吉安市永新县、连云港市连云区、楚雄楚雄市、六安市裕安区、毕节市纳雍县
广西玉林市北流市、文山富宁县、郴州市永兴县、湘潭市湘潭县、齐齐哈尔市龙沙区、东莞市企石镇、连云港市连云区、鸡西市滴道区、咸阳市淳化县
福州市马尾区、常德市安乡县、佳木斯市向阳区、宁夏石嘴山市大武口区、广西河池市大化瑶族自治县、汕头市濠江区
深圳市坪山区、白沙黎族自治县元门乡、鸡西市麻山区、咸宁市赤壁市、玉树囊谦县、铜仁市石阡县、怀化市靖州苗族侗族自治县、广西崇左市宁明县、汉中市城固县
晋中市榆次区、盐城市大丰区、镇江市扬中市、海口市龙华区、济南市长清区、黄冈市蕲春县、广西柳州市柳城县、萍乡市安源区、临夏和政县、重庆市北碚区
通化市通化县、常德市津市市、儋州市木棠镇、重庆市江津区、芜湖市镜湖区、德宏傣族景颇族自治州芒市、广西柳州市城中区、内蒙古包头市九原区
潍坊市高密市、曲靖市会泽县、漳州市龙文区、咸宁市嘉鱼县、晋城市城区、广西柳州市柳南区、内蒙古乌兰察布市丰镇市、甘孜德格县、吉安市青原区
忻州市岢岚县、鸡西市滴道区、晋城市城区、陵水黎族自治县黎安镇、德宏傣族景颇族自治州梁河县、广西河池市东兰县、东莞市望牛墩镇、嘉兴市海宁市、嘉兴市南湖区
商洛市柞水县、宝鸡市太白县、哈尔滨市呼兰区、楚雄牟定县、重庆市北碚区、忻州市岢岚县、齐齐哈尔市克山县、西安市临潼区、琼海市塔洋镇
泉州市永春县、内蒙古巴彦淖尔市乌拉特后旗、六盘水市盘州市、安康市紫阳县、酒泉市瓜州县、大连市普兰店区、忻州市原平市
上海市长宁区、遂宁市蓬溪县、湛江市吴川市、黔南长顺县、宜昌市长阳土家族自治县、重庆市南岸区、周口市鹿邑县
直辖县仙桃市、广西来宾市兴宾区、毕节市织金县、文昌市会文镇、漳州市长泰区、广西桂林市灵川县、九江市瑞昌市、合肥市瑶海区、恩施州建始县
景德镇市昌江区、无锡市宜兴市、丽水市缙云县、平凉市灵台县、延边图们市、宁夏吴忠市利通区、商洛市镇安县、怀化市麻阳苗族自治县、万宁市和乐镇、重庆市大足区
太原市迎泽区、安庆市大观区、东莞市道滘镇、内蒙古鄂尔多斯市康巴什区、台州市三门县
内蒙古鄂尔多斯市康巴什区、文昌市冯坡镇、九江市共青城市、黄冈市团风县、琼海市龙江镇、宁夏中卫市中宁县、商丘市夏邑县、南充市阆中市、内蒙古通辽市科尔沁区、屯昌县西昌镇
天津市和平区、丽水市云和县、龙岩市长汀县、宿州市砀山县、厦门市翔安区、海北门源回族自治县、抚州市南丰县、广西贺州市富川瑶族自治县、楚雄楚雄市、东方市江边乡
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】