普罗巴克智能锁客服热线全国统一
普罗巴克智能锁总部400售后客户服务热线电话:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
普罗巴克智能锁维修网点搜索(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
普罗巴克智能锁报修预约通道
普罗巴克智能锁客服热线一网覆盖
维修配件退换货流程:若客户发现配件存在质量问题,我们将提供详细的退换货流程,确保客户权益不受损害。
普罗巴克智能锁全国人工售后电话24小时
普罗巴克智能锁查询热线
忻州市五寨县、永州市零陵区、中山市黄圃镇、内蒙古赤峰市敖汉旗、郴州市安仁县、东莞市凤岗镇、内蒙古赤峰市红山区、盐城市响水县、广安市邻水县、内蒙古乌兰察布市四子王旗
郴州市北湖区、赣州市瑞金市、太原市古交市、鸡西市鸡冠区、滁州市南谯区、淮南市八公山区、内蒙古兴安盟阿尔山市、凉山布拖县、文昌市东路镇、梅州市平远县
赣州市定南县、玉溪市红塔区、儋州市光村镇、宁德市福鼎市、莆田市涵江区、宜宾市翠屏区
鸡西市梨树区、信阳市息县、烟台市牟平区、荆门市京山市、东莞市南城街道、德阳市旌阳区、成都市双流区、黄冈市红安县、台州市黄岩区、濮阳市华龙区
湘潭市湘乡市、昆明市嵩明县、大庆市大同区、吉安市泰和县、扬州市仪征市、马鞍山市和县、西安市蓝田县、松原市长岭县
佛山市南海区、上海市浦东新区、六盘水市钟山区、肇庆市端州区、遵义市余庆县
龙岩市武平县、郑州市中原区、内蒙古通辽市科尔沁区、海口市龙华区、广西北海市银海区、抚顺市望花区、怀化市麻阳苗族自治县
齐齐哈尔市讷河市、陵水黎族自治县群英乡、安阳市汤阴县、鸡西市鸡冠区、哈尔滨市五常市、广西南宁市武鸣区、中山市西区街道、萍乡市湘东区、内蒙古巴彦淖尔市乌拉特中旗
广西南宁市隆安县、沈阳市法库县、齐齐哈尔市昂昂溪区、泰州市高港区、雅安市汉源县、漯河市源汇区、大庆市林甸县、蚌埠市五河县、内蒙古包头市石拐区
鹰潭市余江区、广西河池市金城江区、南平市延平区、菏泽市巨野县、天津市河北区、临汾市安泽县、通化市二道江区、荆门市掇刀区、昌江黎族自治县海尾镇
六安市舒城县、牡丹江市绥芬河市、厦门市海沧区、安庆市怀宁县、无锡市江阴市、宜春市袁州区
眉山市青神县、齐齐哈尔市克山县、长沙市芙蓉区、漯河市舞阳县、潮州市饶平县、定西市渭源县、晋中市太谷区
平凉市崇信县、烟台市牟平区、株洲市茶陵县、忻州市岢岚县、济南市莱芜区、三门峡市义马市、南京市浦口区、潮州市潮安区
肇庆市广宁县、天津市西青区、昭通市鲁甸县、宜宾市屏山县、鹤岗市兴安区、内江市隆昌市、鹤岗市东山区、随州市随县、青岛市市北区
惠州市博罗县、北京市石景山区、广安市武胜县、白沙黎族自治县元门乡、怀化市麻阳苗族自治县、红河个旧市、淄博市博山区、定安县黄竹镇、黄山市屯溪区、白沙黎族自治县邦溪镇
泰安市泰山区、北京市密云区、屯昌县乌坡镇、汕头市金平区、锦州市凌河区
齐齐哈尔市克山县、新余市分宜县、烟台市招远市、运城市河津市、丽水市遂昌县、常德市石门县、内蒙古阿拉善盟阿拉善左旗、白沙黎族自治县七坊镇
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】