墨一防盗门维修电话全国24小时客服
墨一防盗门报修预约通道:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
墨一防盗门全国维修热线汇总(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
墨一防盗门售后电话及维修站点-各区400服务中心
墨一防盗门24小时全市统一热线
家电使用习惯指导,减少故障发生:在维修过程中,我们的技师会向客户传授正确的家电使用习惯,帮助客户减少因不当使用导致的故障。
墨一防盗门维服热线预约
墨一防盗门400全国售后热线
广西玉林市陆川县、广西来宾市象州县、天水市秦州区、海北祁连县、定安县定城镇、临沂市蒙阴县
沈阳市沈北新区、佳木斯市抚远市、中山市神湾镇、迪庆维西傈僳族自治县、陇南市康县、咸阳市旬邑县、齐齐哈尔市富拉尔基区
肇庆市广宁县、重庆市永川区、黔南都匀市、萍乡市上栗县、济宁市汶上县、临高县南宝镇、渭南市华阴市、佳木斯市同江市、抚州市宜黄县、洛阳市老城区
聊城市东昌府区、龙岩市武平县、聊城市阳谷县、金昌市永昌县、吕梁市兴县、西安市雁塔区
黄冈市罗田县、安康市白河县、延安市延川县、扬州市仪征市、九江市浔阳区、西安市高陵区
武汉市汉阳区、自贡市自流井区、通化市东昌区、内蒙古通辽市库伦旗、黄冈市黄梅县、定西市漳县
黔东南黄平县、赣州市定南县、中山市坦洲镇、淮南市谢家集区、哈尔滨市香坊区、广西梧州市苍梧县、上饶市德兴市、郑州市中牟县
三明市沙县区、赣州市南康区、宝鸡市扶风县、温州市龙湾区、宝鸡市凤县、乐山市马边彝族自治县、中山市三乡镇、广西玉林市玉州区、淮安市涟水县、北京市怀柔区
中山市西区街道、菏泽市牡丹区、武汉市汉阳区、吉林市蛟河市、临沂市临沭县、果洛达日县、眉山市洪雅县
洛阳市瀍河回族区、中山市神湾镇、海南共和县、北京市石景山区、漳州市华安县、咸阳市渭城区、嘉兴市嘉善县、临高县加来镇、甘孜道孚县、吕梁市兴县
定西市通渭县、黑河市孙吴县、楚雄楚雄市、儋州市南丰镇、松原市乾安县、丹东市凤城市
吕梁市中阳县、中山市神湾镇、厦门市同安区、安阳市汤阴县、广西柳州市融安县、昭通市巧家县
汉中市洋县、抚顺市新抚区、牡丹江市林口县、天水市秦州区、广西河池市巴马瑶族自治县、深圳市龙华区、上海市松江区
平凉市泾川县、青岛市即墨区、阜阳市临泉县、吉林市舒兰市、安庆市怀宁县、乐山市峨眉山市、福州市福清市、德州市临邑县、中山市大涌镇、安顺市普定县
嘉峪关市峪泉镇、泉州市金门县、咸阳市淳化县、梅州市兴宁市、临汾市大宁县、东莞市茶山镇、湛江市遂溪县
杭州市富阳区、安阳市文峰区、吉安市庐陵新区、泉州市德化县、重庆市潼南区、三门峡市灵宝市、广安市前锋区、内蒙古鄂尔多斯市伊金霍洛旗、新乡市新乡县、恩施州建始县
乐山市井研县、大连市瓦房店市、东方市江边乡、新乡市卫滨区、天津市宁河区、六安市叶集区、开封市禹王台区、淄博市沂源县、衡阳市衡东县、琼海市长坡镇
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】