全国报修
有问题 必受理
服务流程
拨打电话
线上联系客服
信息加密
安排师傅
最快30分钟
快速响应
上门服务
安心保障

创维冰箱24小时人工服务号电话

发布时间:
创维冰箱总部400售后维修上门服务电话号码







创维冰箱24小时人工服务号电话:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)









创维冰箱厂客服专线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)





创维冰箱售后上门维修热线

创维冰箱速服务热线









家电维修知识在线问答,即时解答疑惑:我们提供家电维修知识在线问答服务,客户可以通过官网、APP等平台提交问题,得到即时解答。




创维冰箱售后咨询服务









创维冰箱各点24小时各区报修统一客服

 济南市济阳区、酒泉市金塔县、阜新市细河区、临汾市永和县、齐齐哈尔市甘南县





郑州市中原区、广西百色市田林县、乐东黎族自治县千家镇、肇庆市怀集县、阜阳市阜南县、澄迈县金江镇、内蒙古赤峰市敖汉旗、安庆市大观区、东莞市中堂镇









广西贵港市覃塘区、武汉市新洲区、黄石市大冶市、直辖县天门市、昭通市盐津县、广西南宁市西乡塘区、定西市安定区、南阳市镇平县









韶关市武江区、文昌市龙楼镇、惠州市龙门县、邵阳市双清区、绥化市绥棱县









潍坊市坊子区、福州市仓山区、甘南碌曲县、广安市邻水县、陇南市文县、甘南合作市、韶关市仁化县









黄山市屯溪区、陵水黎族自治县新村镇、洛阳市偃师区、儋州市中和镇、嘉兴市秀洲区、荆州市松滋市、宜昌市远安县









楚雄永仁县、通化市二道江区、果洛久治县、广西南宁市青秀区、宜宾市江安县、东莞市常平镇









文昌市会文镇、九江市湖口县、东莞市石龙镇、通化市柳河县、绍兴市新昌县、揭阳市惠来县









丽江市永胜县、宁夏固原市隆德县、湖州市德清县、忻州市原平市、肇庆市端州区









白沙黎族自治县阜龙乡、南京市鼓楼区、汉中市留坝县、广西河池市都安瑶族自治县、泉州市永春县









中山市中山港街道、杭州市下城区、宁波市北仑区、沈阳市铁西区、大兴安岭地区新林区、文昌市龙楼镇、株洲市醴陵市、黑河市北安市









绵阳市北川羌族自治县、毕节市七星关区、内蒙古乌兰察布市集宁区、滁州市全椒县、菏泽市单县、临汾市浮山县、阜阳市界首市









南通市如皋市、临沂市平邑县、岳阳市平江县、遵义市余庆县、商洛市商州区、潍坊市高密市、乐东黎族自治县莺歌海镇、景德镇市乐平市、重庆市铜梁区









杭州市拱墅区、达州市开江县、温州市泰顺县、衢州市常山县、南京市江宁区、内蒙古包头市石拐区、榆林市佳县









兰州市永登县、宜宾市兴文县、福州市闽侯县、锦州市黑山县、鸡西市恒山区









九江市共青城市、成都市温江区、佳木斯市汤原县、岳阳市湘阴县、重庆市秀山县、直辖县潜江市、衡阳市蒸湘区、成都市金牛区、黄山市黟县









鹤岗市萝北县、三门峡市陕州区、咸宁市嘉鱼县、徐州市鼓楼区、襄阳市宜城市

  中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。

  北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。

  论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。

  DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。

  在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。

  《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。

  DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】

阅读全文