九阳红酒柜全国总部报修400网点
九阳红酒柜24小时售后电话-总部人工客服号码:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
九阳红酒柜全国各网点服务电话(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
九阳红酒柜维修咨询中心
九阳红酒柜维修咨询
维修服务家电保险服务,额外保障:与保险公司合作,提供家电保险服务,为客户的家电提供额外的保障,减轻意外损失的风险。
九阳红酒柜全国统一400服务电话
九阳红酒柜400全国售后服务24小时热线号码
白沙黎族自治县元门乡、安阳市内黄县、天津市宝坻区、澄迈县瑞溪镇、汕尾市海丰县、新乡市辉县市、广西百色市隆林各族自治县、合肥市肥西县
东莞市麻涌镇、鞍山市千山区、广西柳州市鱼峰区、定安县龙门镇、陇南市礼县、湖州市长兴县、黄冈市团风县、红河绿春县
六安市霍山县、北京市朝阳区、宣城市郎溪县、广西百色市平果市、东营市广饶县、吕梁市汾阳市、内蒙古赤峰市阿鲁科尔沁旗、红河建水县
广西桂林市雁山区、宜春市高安市、潍坊市安丘市、临汾市乡宁县、广安市邻水县、大同市天镇县
济宁市微山县、内蒙古乌兰察布市化德县、洛阳市孟津区、成都市锦江区、阿坝藏族羌族自治州茂县、昌江黎族自治县石碌镇
运城市闻喜县、牡丹江市海林市、梅州市平远县、平凉市泾川县、琼海市阳江镇
开封市尉氏县、韶关市武江区、内蒙古通辽市科尔沁左翼后旗、蚌埠市龙子湖区、绍兴市柯桥区、文昌市蓬莱镇、咸阳市杨陵区、临沧市临翔区、平凉市灵台县、临高县调楼镇
内蒙古锡林郭勒盟正蓝旗、湛江市吴川市、广安市邻水县、铜仁市万山区、重庆市涪陵区、广西柳州市鱼峰区、屯昌县屯城镇
文昌市东阁镇、漳州市长泰区、重庆市奉节县、安阳市龙安区、中山市横栏镇、三门峡市卢氏县、新乡市封丘县、蚌埠市龙子湖区
宝鸡市扶风县、甘孜巴塘县、济宁市汶上县、广元市利州区、温州市龙湾区、天水市秦州区、内蒙古乌兰察布市化德县、大庆市林甸县、德州市陵城区、北京市大兴区
凉山甘洛县、南通市通州区、白城市大安市、内蒙古呼和浩特市托克托县、黄冈市麻城市、黔东南从江县、延边珲春市、铁岭市铁岭县、鸡西市鸡东县、太原市迎泽区
武汉市黄陂区、果洛班玛县、东莞市寮步镇、淮北市相山区、湘西州保靖县、雅安市汉源县、连云港市灌云县、苏州市虎丘区、岳阳市临湘市、泰安市岱岳区
广西梧州市藤县、延边和龙市、宁夏石嘴山市平罗县、广州市黄埔区、亳州市蒙城县、恩施州巴东县
广州市从化区、德州市齐河县、宁夏吴忠市青铜峡市、宁波市江北区、威海市文登区、德州市夏津县、四平市铁西区、南通市海安市
铜仁市印江县、中山市中山港街道、儋州市光村镇、宜春市万载县、天津市南开区、凉山普格县、海东市平安区、永州市零陵区
东莞市东城街道、成都市彭州市、盐城市大丰区、昆明市晋宁区、泸州市泸县、本溪市平山区
广西钦州市灵山县、内蒙古赤峰市克什克腾旗、十堰市郧西县、广西防城港市防城区、平顶山市鲁山县、丹东市宽甸满族自治县
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】