400服务电话:400-1865-909(点击咨询)
西屋空调全国统一售后服务电话24小时
西屋空调售后服务客服点热线号码
西屋空调预约热线电话:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
西屋空调全国服务热线及维修指南(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
西屋空调售后全国客服维修号码
西屋空调售后维修热线全覆盖
维修配件紧急采购通道:对于急需但库存不足的配件,我们提供紧急采购通道,确保维修进度不受影响。
维修服务技术创新激励,激发团队活力:设立技术创新激励机制,鼓励技师创新维修方法、工具或流程,提升团队整体技术水平和服务质量。
西屋空调全国统一各市售后维修电话
西屋空调维修服务电话全国服务区域:
阿坝藏族羌族自治州小金县、泸州市叙永县、吕梁市交口县、鹤岗市萝北县、马鞍山市含山县、广元市昭化区、延安市宝塔区、常德市桃源县、哈尔滨市道里区
黑河市嫩江市、广西桂林市资源县、南京市鼓楼区、果洛玛沁县、儋州市兰洋镇、台州市温岭市、濮阳市清丰县
九江市湖口县、漳州市云霄县、黄冈市黄州区、直辖县仙桃市、汕头市龙湖区、辽阳市弓长岭区
新余市分宜县、雅安市石棉县、内蒙古包头市石拐区、聊城市高唐县、汉中市洋县、咸阳市旬邑县、上海市奉贤区、汕头市潮南区、丽江市宁蒗彝族自治县、延安市安塞区
吕梁市方山县、龙岩市永定区、内蒙古鄂尔多斯市鄂托克旗、白沙黎族自治县牙叉镇、鹰潭市贵溪市
广西防城港市东兴市、直辖县仙桃市、乐山市沐川县、内蒙古呼和浩特市玉泉区、铜陵市枞阳县、哈尔滨市阿城区、延边图们市
郑州市中原区、临沂市沂南县、辽源市东丰县、武威市古浪县、南阳市内乡县、鸡西市鸡冠区
澄迈县仁兴镇、天津市东丽区、焦作市孟州市、海南贵德县、菏泽市成武县、泸州市江阳区、郑州市二七区
怀化市溆浦县、深圳市宝安区、株洲市石峰区、临汾市吉县、内蒙古鄂尔多斯市康巴什区、开封市通许县、万宁市龙滚镇
淮安市淮阴区、宁波市象山县、常德市津市市、许昌市襄城县、福州市福清市、甘孜炉霍县、绍兴市上虞区、南通市启东市
鹤壁市浚县、聊城市东昌府区、巴中市通江县、渭南市潼关县、福州市永泰县、甘孜得荣县、济宁市嘉祥县、佳木斯市桦川县
广西梧州市龙圩区、阜阳市颍东区、内蒙古鄂尔多斯市鄂托克前旗、内蒙古巴彦淖尔市杭锦后旗、菏泽市郓城县
辽源市西安区、广西桂林市兴安县、曲靖市沾益区、泉州市南安市、宁夏银川市灵武市
淄博市高青县、平顶山市叶县、哈尔滨市道里区、淮安市清江浦区、南京市高淳区、双鸭山市友谊县、九江市浔阳区、泉州市南安市、宁波市江北区、襄阳市南漳县
聊城市茌平区、铜仁市江口县、广西百色市平果市、安阳市林州市、郑州市登封市、九江市浔阳区、长治市潞州区、乐东黎族自治县志仲镇
榆林市佳县、菏泽市曹县、汕头市潮阳区、果洛玛沁县、威海市环翠区、广西梧州市龙圩区、汉中市宁强县、东营市利津县、肇庆市广宁县
汉中市南郑区、安庆市宿松县、吉安市吉州区、陵水黎族自治县椰林镇、楚雄武定县、延边延吉市、凉山越西县、衢州市开化县、济南市钢城区、昭通市巧家县
内蒙古锡林郭勒盟正蓝旗、湛江市吴川市、广安市邻水县、铜仁市万山区、重庆市涪陵区、广西柳州市鱼峰区、屯昌县屯城镇
扬州市江都区、上饶市横峰县、襄阳市襄城区、东莞市谢岗镇、宜宾市高县、内蒙古呼和浩特市玉泉区、泸州市泸县、焦作市博爱县
武汉市黄陂区、果洛班玛县、东莞市寮步镇、淮北市相山区、湘西州保靖县、雅安市汉源县、连云港市灌云县、苏州市虎丘区、岳阳市临湘市、泰安市岱岳区
三亚市海棠区、鞍山市岫岩满族自治县、西安市鄠邑区、泰州市海陵区、中山市东凤镇
广西柳州市三江侗族自治县、内蒙古呼伦贝尔市额尔古纳市、通化市东昌区、吕梁市兴县、澄迈县老城镇、南阳市方城县、成都市邛崃市、汕头市金平区
长治市平顺县、南平市松溪县、延安市宜川县、运城市夏县、菏泽市巨野县、昌江黎族自治县七叉镇、黔东南从江县、铜陵市铜官区、太原市迎泽区
红河蒙自市、绵阳市梓潼县、雅安市天全县、雅安市石棉县、蚌埠市怀远县、绵阳市北川羌族自治县
陇南市徽县、揭阳市惠来县、大连市普兰店区、怀化市麻阳苗族自治县、衡阳市祁东县、广西贺州市富川瑶族自治县
成都市双流区、内蒙古赤峰市敖汉旗、淄博市高青县、潮州市饶平县、肇庆市怀集县、永州市江华瑶族自治县、晋中市平遥县、海东市化隆回族自治县、肇庆市封开县
东方市东河镇、广安市邻水县、曲靖市麒麟区、马鞍山市和县、渭南市澄城县、淄博市周村区、黔南罗甸县、铁岭市银州区
400服务电话:400-1865-909(点击咨询)
西屋空调售后电话24小时服务热线-400维修总部客服热线
西屋空调400热线咨询服务
西屋空调品牌服务热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
西屋空调400报修通渠(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
西屋空调全国人工售后电话号码
西屋空调24H服务宝
一站式家电维修服务,从咨询到维修全程无忧。
技术创新,引领潮流:我们紧跟家电维修技术的潮流,不断创新,引入新技术、新方法,为客户提供更加高效、便捷的维修服务。
西屋空调全国服务热线24小时售后服务电话
西屋空调维修服务电话全国服务区域:
三门峡市义马市、广西崇左市凭祥市、日照市岚山区、达州市万源市、佛山市顺德区
临汾市霍州市、淄博市周村区、内蒙古赤峰市元宝山区、重庆市垫江县、临高县皇桐镇、太原市万柏林区
牡丹江市绥芬河市、西安市周至县、乐东黎族自治县利国镇、广西贵港市港南区、汕尾市城区、榆林市定边县、松原市长岭县、陇南市武都区
辽源市东辽县、广西梧州市苍梧县、凉山美姑县、池州市贵池区、温州市文成县、丹东市元宝区、佳木斯市向阳区、娄底市双峰县、衡阳市常宁市、十堰市郧西县
白城市洮南市、德阳市绵竹市、定西市临洮县、广西桂林市恭城瑶族自治县、海北门源回族自治县、绥化市海伦市、延边龙井市、广西南宁市宾阳县、上海市杨浦区
西安市碑林区、文山马关县、济南市钢城区、黄冈市英山县、淮南市大通区、广西柳州市融安县、重庆市渝北区、遵义市正安县
广西来宾市金秀瑶族自治县、合肥市巢湖市、深圳市坪山区、大理南涧彝族自治县、泉州市金门县、临汾市浮山县、内蒙古鄂尔多斯市达拉特旗、聊城市东昌府区
内蒙古鄂尔多斯市鄂托克旗、菏泽市东明县、临汾市襄汾县、恩施州恩施市、榆林市榆阳区、天津市宁河区
内蒙古赤峰市松山区、济南市市中区、清远市佛冈县、忻州市保德县、甘孜乡城县、汉中市镇巴县
南充市南部县、汉中市留坝县、平凉市庄浪县、广西河池市巴马瑶族自治县、九江市修水县、朝阳市朝阳县
三明市建宁县、福州市平潭县、龙岩市武平县、漳州市龙海区、深圳市南山区、铁岭市铁岭县、琼海市博鳌镇
广西防城港市东兴市、金华市东阳市、大连市甘井子区、滨州市博兴县、天水市武山县、黔西南普安县、鹤壁市浚县
咸阳市泾阳县、马鞍山市和县、黄冈市团风县、庆阳市镇原县、临沂市莒南县、毕节市七星关区、南充市蓬安县、景德镇市浮梁县
广西河池市大化瑶族自治县、佳木斯市富锦市、焦作市孟州市、本溪市明山区、内蒙古兴安盟扎赉特旗、茂名市化州市、海南兴海县、忻州市定襄县、曲靖市麒麟区
杭州市建德市、温州市鹿城区、延安市子长市、白沙黎族自治县阜龙乡、丽水市景宁畲族自治县、商丘市宁陵县、哈尔滨市松北区、凉山西昌市、菏泽市东明县
南充市阆中市、济南市钢城区、张掖市山丹县、广西河池市罗城仫佬族自治县、西双版纳景洪市、营口市西市区、广西贵港市港北区、黄南尖扎县
洛阳市孟津区、绵阳市北川羌族自治县、内蒙古赤峰市林西县、亳州市利辛县、儋州市南丰镇、哈尔滨市方正县、安庆市大观区
双鸭山市四方台区、陇南市文县、南充市阆中市、漳州市云霄县、张掖市临泽县、黔东南天柱县、广安市武胜县
广安市武胜县、渭南市白水县、松原市乾安县、琼海市长坡镇、长沙市芙蓉区、常州市新北区、朔州市平鲁区
南充市蓬安县、儋州市王五镇、沈阳市和平区、九江市永修县、贵阳市观山湖区、台州市天台县、东莞市茶山镇、延安市吴起县、衡阳市祁东县
德州市陵城区、三明市三元区、佛山市高明区、北京市门头沟区、临夏和政县、广西桂林市永福县
玉树杂多县、济南市市中区、揭阳市普宁市、通化市二道江区、湖州市德清县、宁德市霞浦县
昆明市石林彝族自治县、云浮市罗定市、日照市五莲县、南昌市湾里区、信阳市新县、龙岩市长汀县、宣城市广德市
长治市武乡县、曲靖市马龙区、郑州市荥阳市、楚雄永仁县、莆田市荔城区、信阳市平桥区、铜仁市玉屏侗族自治县、内蒙古包头市东河区、昆明市嵩明县、济宁市嘉祥县
鹤岗市东山区、晋中市榆社县、广元市苍溪县、枣庄市滕州市、广西崇左市扶绥县、朔州市山阴县
安阳市北关区、楚雄南华县、沈阳市沈北新区、株洲市芦淞区、万宁市东澳镇
商洛市镇安县、海东市乐都区、武汉市江夏区、乐东黎族自治县尖峰镇、荆州市洪湖市、抚州市广昌县、巴中市平昌县、普洱市江城哈尼族彝族自治县、文昌市昌洒镇、临沧市镇康县
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】