金帝油烟机24小时厂家统一热线400受理客服中心
金帝油烟机客服售后电话是多少:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
金帝油烟机售后报修中心电话号码是多少(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
金帝油烟机客服热线统一服务
金帝油烟机维修网点查询助手
配件原厂认证,质量有保障:我们承诺所有更换的配件均经过原厂认证,确保配件质量上乘,与家电完美匹配,避免兼容性问题。
金帝油烟机人工维修点
金帝油烟机维修服务电话查询
开封市杞县、内蒙古呼伦贝尔市海拉尔区、佳木斯市抚远市、韶关市乐昌市、东方市三家镇、阜新市清河门区、西宁市城东区、嘉兴市平湖市、洛阳市伊川县、龙岩市连城县
黄冈市红安县、抚州市宜黄县、长沙市芙蓉区、东方市三家镇、陵水黎族自治县本号镇
天津市宁河区、徐州市贾汪区、常州市金坛区、双鸭山市岭东区、大兴安岭地区呼玛县、开封市鼓楼区、中山市民众镇、常德市临澧县、内蒙古鄂尔多斯市乌审旗
张掖市民乐县、济南市市中区、广西南宁市上林县、金华市金东区、汕头市金平区、安康市汉滨区、惠州市惠城区、蚌埠市蚌山区、万宁市龙滚镇
焦作市温县、广西来宾市兴宾区、内蒙古通辽市奈曼旗、三亚市海棠区、黔西南望谟县、商丘市虞城县、潍坊市临朐县、福州市鼓楼区、攀枝花市米易县、吉安市吉州区
珠海市香洲区、咸阳市渭城区、绥化市安达市、文昌市文城镇、肇庆市端州区、盘锦市盘山县
延边龙井市、宁波市宁海县、安庆市太湖县、襄阳市宜城市、清远市清新区、宜昌市点军区、南京市建邺区
广西玉林市北流市、昌江黎族自治县七叉镇、晋城市陵川县、牡丹江市穆棱市、万宁市北大镇、广元市青川县、蚌埠市龙子湖区、抚州市临川区、怀化市芷江侗族自治县
眉山市青神县、阜阳市颍东区、广西桂林市灵川县、大理漾濞彝族自治县、内蒙古包头市昆都仑区、昆明市东川区、岳阳市岳阳县、滁州市天长市、五指山市毛道、宁夏中卫市中宁县
海北海晏县、内蒙古呼伦贝尔市陈巴尔虎旗、临沧市永德县、佳木斯市郊区、重庆市永川区、泰州市泰兴市、直辖县仙桃市、达州市宣汉县、铁岭市清河区、淮南市潘集区
文昌市文城镇、巴中市通江县、遵义市红花岗区、甘孜乡城县、安顺市普定县、黄冈市武穴市、广元市青川县、临汾市汾西县、佳木斯市桦川县
广西桂林市资源县、凉山会理市、肇庆市封开县、内蒙古通辽市扎鲁特旗、渭南市澄城县、毕节市黔西市、怀化市洪江市
吉安市吉水县、盐城市响水县、昆明市呈贡区、白山市临江市、宜宾市南溪区、湘潭市韶山市、内蒙古包头市土默特右旗、潍坊市高密市、陵水黎族自治县新村镇
琼海市博鳌镇、淄博市临淄区、遵义市凤冈县、东莞市石碣镇、泉州市德化县、温州市泰顺县、淮南市谢家集区
汕尾市海丰县、江门市江海区、临沂市河东区、抚州市崇仁县、内蒙古锡林郭勒盟苏尼特右旗、吕梁市柳林县、天津市红桥区、清远市连南瑶族自治县、三亚市吉阳区
武汉市黄陂区、甘孜新龙县、广西崇左市大新县、潍坊市青州市、甘孜道孚县、六盘水市盘州市、红河蒙自市
张掖市肃南裕固族自治县、湛江市麻章区、开封市龙亭区、定安县定城镇、临汾市曲沃县、巴中市巴州区、红河元阳县
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】