400服务电话:400-1865-909(点击咨询)
邦麦鑫保险柜快修服务专线
邦麦鑫保险柜售后维修服务电话/全国统一热线400受理客服中心
邦麦鑫保险柜全国各县市400售后:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
邦麦鑫保险柜总部400电话全国统一网点售后(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
邦麦鑫保险柜客服专线全天候支持
邦麦鑫保险柜维修速达
售后保修期延长服务,提供额外的保修期,增加用户保障。
设备故障诊断:在维修前,我们会进行详细的设备故障诊断,确保准确找出问题所在。
邦麦鑫保险柜全国统一24小时400热线
邦麦鑫保险柜维修服务电话全国服务区域:
咸阳市秦都区、茂名市茂南区、儋州市东成镇、抚州市乐安县、周口市项城市
汉中市洋县、东莞市道滘镇、永州市江永县、文昌市潭牛镇、内蒙古锡林郭勒盟多伦县
西宁市大通回族土族自治县、杭州市江干区、甘孜色达县、景德镇市乐平市、抚州市黎川县、广西柳州市柳北区、忻州市岢岚县、厦门市湖里区
深圳市盐田区、济南市历城区、阳泉市盂县、宁波市江北区、大同市云州区
雅安市汉源县、文山砚山县、甘孜炉霍县、咸阳市三原县、定西市安定区、广州市增城区
苏州市吴中区、阜新市清河门区、吕梁市方山县、韶关市乐昌市、厦门市思明区、内蒙古鄂尔多斯市鄂托克旗、娄底市冷水江市、怀化市新晃侗族自治县
铁岭市昌图县、漳州市长泰区、鹤岗市南山区、宁夏固原市隆德县、迪庆维西傈僳族自治县、汉中市留坝县
四平市铁东区、杭州市富阳区、黔南龙里县、盘锦市双台子区、泉州市丰泽区、普洱市西盟佤族自治县、陵水黎族自治县光坡镇、澄迈县金江镇
郑州市金水区、株洲市渌口区、六盘水市水城区、西安市周至县、广西百色市田阳区、马鞍山市博望区、连云港市海州区、广西南宁市兴宁区
广州市越秀区、黄南泽库县、武汉市洪山区、三明市大田县、果洛甘德县、广西南宁市良庆区、淮南市谢家集区、陇南市成县
湘西州保靖县、滨州市博兴县、长春市九台区、咸阳市旬邑县、重庆市南岸区、营口市盖州市、玉树杂多县
湘潭市湘乡市、吉林市蛟河市、定西市陇西县、新乡市长垣市、内蒙古呼和浩特市土默特左旗、宜宾市长宁县、东莞市大朗镇、温州市乐清市
黄石市阳新县、开封市顺河回族区、海西蒙古族天峻县、内蒙古巴彦淖尔市乌拉特后旗、宜春市丰城市、重庆市铜梁区
汕尾市陆丰市、成都市大邑县、营口市老边区、萍乡市上栗县、台州市天台县
七台河市茄子河区、张家界市武陵源区、南昌市东湖区、丽江市宁蒗彝族自治县、达州市开江县
延安市子长市、黔南平塘县、济南市长清区、周口市沈丘县、广西玉林市兴业县
郴州市苏仙区、赣州市宁都县、南昌市东湖区、德阳市罗江区、白山市抚松县、万宁市礼纪镇、广西玉林市陆川县、漳州市南靖县、定安县翰林镇
延安市延川县、江门市开平市、鹤壁市淇县、澄迈县福山镇、南充市蓬安县、普洱市景东彝族自治县
东营市河口区、广西梧州市龙圩区、漳州市华安县、内蒙古兴安盟突泉县、广州市白云区、湛江市徐闻县、宝鸡市眉县、万宁市后安镇、常州市金坛区
东莞市厚街镇、怀化市溆浦县、金华市浦江县、哈尔滨市道外区、楚雄双柏县、直辖县神农架林区、安阳市林州市、广州市黄埔区
荆门市沙洋县、广西北海市合浦县、宿州市萧县、宁夏中卫市海原县、天津市北辰区、温州市文成县、吕梁市交城县、内蒙古鄂尔多斯市康巴什区、吉林市龙潭区
四平市公主岭市、嘉兴市南湖区、东莞市东城街道、滨州市邹平市、忻州市五寨县、新乡市卫滨区、大庆市红岗区
益阳市赫山区、周口市西华县、潍坊市诸城市、临汾市永和县、辽阳市灯塔市
襄阳市襄州区、合肥市蜀山区、蚌埠市蚌山区、鹤岗市南山区、黔南罗甸县、齐齐哈尔市克山县、天水市甘谷县
菏泽市鄄城县、东方市感城镇、广西贵港市桂平市、济宁市曲阜市、孝感市大悟县、苏州市姑苏区、温州市乐清市、广西来宾市金秀瑶族自治县、白城市镇赉县
屯昌县屯城镇、菏泽市定陶区、荆门市钟祥市、眉山市仁寿县、运城市临猗县、榆林市米脂县、陇南市西和县
新乡市红旗区、潍坊市寿光市、阿坝藏族羌族自治州金川县、宜昌市猇亭区、南通市崇川区、东莞市东坑镇、荆州市江陵县、宿迁市宿豫区、广西百色市那坡县
400服务电话:400-1865-909(点击咨询)
邦麦鑫保险柜官方售后网点
邦麦鑫保险柜统一400客户服务电话
邦麦鑫保险柜售后热线电话:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
邦麦鑫保险柜24小时人工服务-售后400热线网点电话(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
邦麦鑫保险柜全天人工热线
邦麦鑫保险柜服务热线电话
我们提供设备使用培训和指导,帮助您更好地发挥设备性能。
维修服务个性化包装服务,保护家电:在搬运或运输过程中,提供个性化包装服务,确保家电在运输过程中不受损坏。
邦麦鑫保险柜总部售后服务400人工热线/全国联保24小时/全天候服务
邦麦鑫保险柜维修服务电话全国服务区域:
南充市南部县、淄博市淄川区、上饶市铅山县、衡阳市南岳区、宿州市灵璧县、普洱市思茅区、合肥市瑶海区、广西河池市环江毛南族自治县、南充市阆中市
大理鹤庆县、新乡市延津县、深圳市龙岗区、泰州市姜堰区、焦作市温县、安康市镇坪县、昭通市镇雄县、丽江市永胜县、长沙市浏阳市
昭通市绥江县、朝阳市龙城区、新乡市卫滨区、毕节市织金县、郑州市登封市、海南贵南县、东莞市凤岗镇、吕梁市临县
安徽省、北京市、福建省、甘肃省、广东省、广西壮族自治区、贵州省、海南省、河北省、河南省、黑龙江省、湖北省、湖南省、吉林省、江苏省、江西省、辽宁省、内蒙古自治区、宁夏回族自治区、青海省、山东省、山西省、陕西省、上海市、四川省、天津市、西藏自治区、新疆维吾尔自治区、云南省、浙江省、重庆市
十堰市郧阳区、双鸭山市岭东区、九江市德安县、焦作市孟州市、常德市汉寿县
万宁市山根镇、驻马店市汝南县、齐齐哈尔市泰来县、儋州市大成镇、嘉峪关市文殊镇、鸡西市滴道区、达州市万源市、铁岭市开原市
中山市南区街道、铜仁市碧江区、郴州市嘉禾县、朔州市右玉县、楚雄大姚县、重庆市石柱土家族自治县、朔州市朔城区、广西贺州市平桂区、南通市崇川区
晋中市左权县、济宁市梁山县、恩施州宣恩县、六盘水市盘州市、宝鸡市金台区、长治市襄垣县、陇南市礼县
吕梁市离石区、龙岩市上杭县、咸阳市三原县、内蒙古锡林郭勒盟苏尼特右旗、中山市南头镇、榆林市子洲县
自贡市富顺县、新乡市延津县、吕梁市兴县、济宁市泗水县、牡丹江市东安区、抚州市临川区、上海市青浦区、佛山市顺德区、咸阳市泾阳县
安康市石泉县、广西北海市合浦县、青岛市即墨区、丽水市青田县、凉山德昌县
葫芦岛市南票区、济南市平阴县、新乡市原阳县、周口市西华县、黔西南兴义市、天津市河东区、厦门市湖里区
内蒙古兴安盟科尔沁右翼中旗、湖州市安吉县、漯河市临颍县、朝阳市凌源市、忻州市偏关县、白城市大安市、内蒙古通辽市科尔沁左翼中旗、丽水市莲都区、马鞍山市花山区
内蒙古兴安盟科尔沁右翼中旗、德阳市广汉市、通化市梅河口市、锦州市凌海市、长治市壶关县、澄迈县加乐镇、宜昌市长阳土家族自治县、贵阳市云岩区、咸阳市渭城区、抚州市崇仁县
上海市宝山区、五指山市南圣、广西北海市铁山港区、内蒙古通辽市库伦旗、洛阳市洛宁县、漳州市长泰区、三明市三元区、文山麻栗坡县
黑河市逊克县、广西南宁市宾阳县、咸阳市武功县、昌江黎族自治县乌烈镇、广西河池市南丹县
台州市三门县、红河河口瑶族自治县、深圳市龙华区、上海市虹口区、滁州市天长市
芜湖市南陵县、烟台市蓬莱区、抚顺市新宾满族自治县、平凉市灵台县、湖州市吴兴区、宁波市江北区
赣州市信丰县、盐城市盐都区、黑河市爱辉区、北京市怀柔区、济南市天桥区、广西柳州市柳城县、驻马店市驿城区、酒泉市金塔县
临高县博厚镇、广州市海珠区、洛阳市瀍河回族区、西宁市城西区、齐齐哈尔市建华区、新余市渝水区、长春市德惠市、运城市稷山县
广西梧州市岑溪市、长沙市天心区、镇江市润州区、六安市裕安区、茂名市高州市、玉树曲麻莱县、儋州市峨蔓镇、内蒙古呼伦贝尔市扎兰屯市
丽江市古城区、绍兴市柯桥区、延安市吴起县、齐齐哈尔市昂昂溪区、宁德市寿宁县、广西桂林市恭城瑶族自治县、安康市白河县、内蒙古阿拉善盟额济纳旗
澄迈县金江镇、哈尔滨市南岗区、吕梁市孝义市、广西崇左市龙州县、牡丹江市海林市、黔东南麻江县、潍坊市寒亭区、内蒙古乌兰察布市兴和县
内蒙古包头市东河区、厦门市翔安区、铁岭市西丰县、攀枝花市仁和区、西安市蓝田县、陵水黎族自治县三才镇
牡丹江市海林市、伊春市铁力市、昌江黎族自治县乌烈镇、乐东黎族自治县九所镇、杭州市西湖区、内江市市中区、枣庄市峄城区、景德镇市珠山区
临夏康乐县、郑州市中牟县、五指山市毛道、北京市大兴区、晋城市沁水县、太原市小店区、郴州市北湖区、大理祥云县、黔东南从江县
宁夏固原市彭阳县、广西河池市天峨县、安顺市普定县、黔南罗甸县、齐齐哈尔市建华区
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】