全国报修
有问题 必受理
服务流程
拨打电话
线上联系客服
信息加密
安排师傅
最快30分钟
快速响应
上门服务
安心保障

梦本保险柜维保全国上门

发布时间:
梦本保险柜售后维修24小时服务电话预约







梦本保险柜维保全国上门:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)









梦本保险柜24h服务中心(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)





梦本保险柜全国各服务24小时热线号码

梦本保险柜全国各地区售后服务热线电话









全天候客服支持:我们提供7x24小时人工客服,随时解答您的家电维修疑问。




梦本保险柜24小时客服咨询热线









梦本保险柜售后服务网点电查询

 红河河口瑶族自治县、定安县雷鸣镇、清远市阳山县、温州市洞头区、临沂市平邑县、岳阳市岳阳县、乐东黎族自治县佛罗镇、吕梁市交口县、广西防城港市防城区、普洱市宁洱哈尼族彝族自治县





济宁市曲阜市、徐州市丰县、广西贺州市平桂区、荆州市洪湖市、南京市高淳区









吉林市昌邑区、淮南市八公山区、绵阳市三台县、齐齐哈尔市讷河市、安阳市龙安区、延边安图县









文山广南县、榆林市绥德县、宁波市宁海县、梅州市梅县区、嘉峪关市新城镇、上饶市铅山县、渭南市华阴市、广西防城港市东兴市









通化市二道江区、衡阳市珠晖区、达州市宣汉县、西宁市湟中区、沈阳市于洪区、临沧市凤庆县









宁夏银川市兴庆区、文昌市潭牛镇、通化市通化县、淮南市大通区、铜陵市枞阳县、吉林市磐石市、杭州市上城区









德州市德城区、常德市津市市、运城市临猗县、临夏东乡族自治县、莆田市秀屿区、岳阳市汨罗市、铜陵市郊区、屯昌县坡心镇









东莞市石碣镇、荆州市监利市、三门峡市义马市、长春市农安县、九江市浔阳区









黄冈市武穴市、屯昌县南吕镇、济源市市辖区、九江市修水县、蚌埠市怀远县、内蒙古呼和浩特市新城区、辽阳市弓长岭区、张家界市慈利县、屯昌县西昌镇、凉山金阳县









济宁市任城区、凉山盐源县、曲靖市麒麟区、中山市民众镇、广西河池市罗城仫佬族自治县、江门市新会区、嘉峪关市新城镇









昆明市石林彝族自治县、大兴安岭地区新林区、济南市槐荫区、东营市广饶县、吉安市井冈山市、临汾市安泽县、文昌市文城镇、厦门市湖里区、中山市坦洲镇









铜仁市松桃苗族自治县、宿州市埇桥区、莆田市涵江区、亳州市谯城区、内蒙古鄂尔多斯市杭锦旗、渭南市蒲城县、焦作市沁阳市、琼海市石壁镇









乐东黎族自治县万冲镇、长治市潞州区、沈阳市新民市、淮南市寿县、上饶市广信区、镇江市润州区、赣州市瑞金市、儋州市排浦镇、哈尔滨市尚志市









广西河池市罗城仫佬族自治县、三明市尤溪县、太原市万柏林区、丹东市宽甸满族自治县、福州市晋安区、抚州市广昌县、中山市南朗镇、邵阳市双清区、黄南同仁市、临高县波莲镇









嘉兴市平湖市、三明市三元区、宜宾市长宁县、衡阳市祁东县、佛山市三水区









沈阳市法库县、德州市武城县、惠州市惠阳区、迪庆维西傈僳族自治县、金华市武义县









内蒙古兴安盟科尔沁右翼中旗、德阳市广汉市、通化市梅河口市、锦州市凌海市、长治市壶关县、澄迈县加乐镇、宜昌市长阳土家族自治县、贵阳市云岩区、咸阳市渭城区、抚州市崇仁县

  中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。

  北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。

  论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。

  DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。

  在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。

  《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。

  DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】

阅读全文