400服务电话:400-1865-909(点击咨询)
富士通网点电话咨询
富士通服务热线客服中心
富士通故障咨询网点:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
富士通维修上门维修附近电话全国(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
富士通全国售后热线电话
富士通总部各市报修热线
老客户回馈,优惠多多:我们为长期合作的老客户提供专属优惠和回馈活动,感谢您的信任与支持。
严格质量控制:对维修过程进行严格质量控制,确保维修质量可靠。
富士通热线服务咨询
富士通维修服务电话全国服务区域:
三门峡市卢氏县、蚌埠市固镇县、娄底市娄星区、宁夏吴忠市同心县、广西河池市天峨县、蚌埠市怀远县、鹰潭市余江区、五指山市毛道、陵水黎族自治县三才镇
宿迁市宿豫区、十堰市张湾区、内蒙古包头市石拐区、辽阳市宏伟区、重庆市云阳县、乐东黎族自治县千家镇、定安县定城镇、忻州市静乐县、绥化市肇东市
杭州市西湖区、甘孜德格县、驻马店市确山县、毕节市大方县、临汾市侯马市、内蒙古锡林郭勒盟阿巴嘎旗、泸州市古蔺县、邵阳市双清区、安康市平利县
酒泉市阿克塞哈萨克族自治县、黄石市黄石港区、临沧市沧源佤族自治县、娄底市新化县、大同市左云县、泉州市安溪县、齐齐哈尔市甘南县、鞍山市立山区、兰州市永登县
成都市蒲江县、黔东南天柱县、齐齐哈尔市铁锋区、新乡市红旗区、白沙黎族自治县元门乡、铁岭市开原市、焦作市解放区、齐齐哈尔市龙江县
十堰市茅箭区、黑河市孙吴县、岳阳市湘阴县、楚雄牟定县、淮南市寿县、玉溪市华宁县、东方市江边乡、天水市清水县、伊春市汤旺县
东莞市厚街镇、广西崇左市大新县、铜仁市德江县、宣城市郎溪县、宜宾市高县、咸阳市彬州市、商丘市柘城县、伊春市金林区、广州市白云区
肇庆市端州区、广西桂林市叠彩区、江门市蓬江区、东方市板桥镇、乐东黎族自治县九所镇、天水市甘谷县、长沙市岳麓区
景德镇市昌江区、永州市蓝山县、重庆市云阳县、东莞市东城街道、北京市顺义区、连云港市海州区、凉山普格县、长治市屯留区
鹰潭市余江区、舟山市嵊泗县、海西蒙古族天峻县、蚌埠市怀远县、漯河市临颍县、锦州市凌河区
湘潭市雨湖区、宜昌市西陵区、四平市双辽市、龙岩市上杭县、本溪市桓仁满族自治县、焦作市解放区、东营市东营区、丽水市松阳县
重庆市渝北区、南通市如东县、马鞍山市花山区、榆林市子洲县、岳阳市君山区、滨州市博兴县、阳江市阳东区、广安市邻水县
十堰市郧阳区、双鸭山市岭东区、九江市德安县、焦作市孟州市、常德市汉寿县
东莞市麻涌镇、信阳市息县、德宏傣族景颇族自治州陇川县、中山市阜沙镇、文昌市会文镇
宁波市宁海县、内蒙古呼伦贝尔市扎赉诺尔区、焦作市博爱县、广西崇左市宁明县、信阳市浉河区、泸州市合江县、渭南市潼关县、黔东南雷山县、巴中市通江县
昌江黎族自治县叉河镇、东方市八所镇、遂宁市船山区、十堰市竹溪县、泉州市丰泽区
西双版纳景洪市、金华市磐安县、广安市华蓥市、哈尔滨市尚志市、葫芦岛市建昌县
重庆市武隆区、中山市南区街道、宝鸡市麟游县、芜湖市弋江区、西安市长安区、雅安市宝兴县、广西桂林市象山区、曲靖市富源县、德州市禹城市
嘉峪关市新城镇、西双版纳勐腊县、海西蒙古族德令哈市、朔州市怀仁市、广西钦州市钦北区、十堰市竹溪县
黔东南天柱县、济宁市梁山县、晋中市太谷区、内蒙古包头市青山区、泉州市永春县、伊春市丰林县、万宁市山根镇
朝阳市龙城区、四平市铁西区、东莞市谢岗镇、宁夏吴忠市盐池县、哈尔滨市呼兰区、南充市蓬安县、运城市河津市、葫芦岛市兴城市、杭州市建德市、内蒙古兴安盟科尔沁右翼中旗
辽源市东辽县、广西梧州市苍梧县、凉山美姑县、池州市贵池区、温州市文成县、丹东市元宝区、佳木斯市向阳区、娄底市双峰县、衡阳市常宁市、十堰市郧西县
重庆市北碚区、海东市互助土族自治县、甘南卓尼县、大庆市肇源县、重庆市武隆区、泰安市泰山区、潍坊市潍城区、宜昌市长阳土家族自治县、信阳市商城县、漳州市云霄县
枣庄市市中区、汉中市勉县、儋州市王五镇、内蒙古呼和浩特市玉泉区、益阳市桃江县、西安市周至县、合肥市肥东县、白沙黎族自治县南开乡、宣城市郎溪县
内蒙古阿拉善盟阿拉善左旗、嘉兴市嘉善县、平顶山市湛河区、内蒙古赤峰市巴林右旗、六安市金安区、周口市淮阳区、上海市奉贤区、陇南市西和县、甘孜得荣县、东莞市茶山镇
伊春市铁力市、安阳市滑县、儋州市兰洋镇、黔南罗甸县、上饶市万年县
天津市蓟州区、万宁市礼纪镇、牡丹江市东宁市、安阳市龙安区、海西蒙古族茫崖市、酒泉市肃州区、武汉市江夏区、白沙黎族自治县金波乡、临沧市凤庆县、大连市旅顺口区
400服务电话:400-1865-909(点击咨询)
富士通售后服务务24小时服务热线电话
富士通售后服务维修官网全国网点
富士通售后服务维修电话号码查询:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
富士通400全国售后24小时服务电话号码(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
富士通总部400售后服务维修热线电话
富士通400客服售后全国维修电话
我们致力于成为您设备维护的首选合作伙伴,为您提供一站式服务解决方案。
我们承诺,所有维修服务均提供紧急响应服务,确保关键时刻不掉链子。
富士通全国服务热线及维修指南
富士通维修服务电话全国服务区域:
雅安市汉源县、文山砚山县、甘孜炉霍县、咸阳市三原县、定西市安定区、广州市增城区
阳泉市城区、德阳市广汉市、大庆市林甸县、内蒙古乌兰察布市卓资县、绵阳市涪城区、西双版纳勐海县、宜宾市兴文县、天水市武山县
郑州市上街区、新乡市原阳县、金华市永康市、广西贵港市覃塘区、清远市清新区、安庆市大观区、商丘市柘城县、西宁市城北区、蚌埠市怀远县、镇江市句容市
黄山市屯溪区、万宁市后安镇、上海市静安区、镇江市丹徒区、永州市冷水滩区、南通市启东市、临夏东乡族自治县、长春市农安县、长治市壶关县、中山市港口镇
杭州市富阳区、宝鸡市千阳县、广州市从化区、池州市青阳县、朝阳市凌源市、昭通市盐津县、内蒙古呼和浩特市武川县、鹤壁市鹤山区、商洛市洛南县、红河泸西县
益阳市资阳区、广西桂林市灵川县、广安市岳池县、黔南罗甸县、汉中市留坝县、湖州市安吉县、内蒙古通辽市库伦旗、潍坊市高密市、齐齐哈尔市拜泉县
红河金平苗族瑶族傣族自治县、铜仁市石阡县、三沙市西沙区、玉树杂多县、东莞市常平镇
天津市和平区、丽水市云和县、龙岩市长汀县、宿州市砀山县、厦门市翔安区、海北门源回族自治县、抚州市南丰县、广西贺州市富川瑶族自治县、楚雄楚雄市、东方市江边乡
中山市民众镇、潍坊市寿光市、六安市金寨县、咸阳市旬邑县、周口市沈丘县、临沧市沧源佤族自治县、怀化市鹤城区、大理永平县
果洛玛沁县、阜阳市界首市、南充市高坪区、四平市双辽市、白沙黎族自治县打安镇、汕尾市城区、儋州市新州镇
白沙黎族自治县南开乡、宿迁市泗阳县、雅安市雨城区、鞍山市海城市、黔西南贞丰县、赣州市兴国县、孝感市孝昌县、荆州市沙市区、安阳市内黄县、广西玉林市博白县
广州市从化区、常德市安乡县、万宁市礼纪镇、马鞍山市花山区、黔东南天柱县、绥化市兰西县
海口市琼山区、伊春市丰林县、渭南市合阳县、通化市集安市、吉安市遂川县
定安县富文镇、武汉市江岸区、武汉市青山区、苏州市昆山市、开封市尉氏县、徐州市睢宁县、黄冈市黄梅县、通化市柳河县
西安市新城区、武汉市汉南区、自贡市自流井区、温州市龙港市、阜阳市界首市、内蒙古乌海市乌达区、沈阳市沈河区、延安市延川县、泰安市肥城市、黔东南施秉县
巴中市南江县、昭通市彝良县、邵阳市双清区、广西桂林市雁山区、九江市共青城市、晋中市介休市、澄迈县加乐镇、铁岭市昌图县
延安市甘泉县、德阳市绵竹市、雅安市芦山县、杭州市滨江区、黔东南黄平县、广西百色市平果市、泸州市合江县
驻马店市泌阳县、文昌市公坡镇、东莞市东城街道、淮安市金湖县、甘孜色达县、文山广南县
安康市汉阴县、鹤岗市南山区、徐州市丰县、福州市马尾区、平顶山市卫东区、上饶市德兴市、黑河市孙吴县、保山市龙陵县
黄石市黄石港区、巴中市南江县、泸州市纳溪区、楚雄双柏县、安康市白河县、衡阳市衡南县、驻马店市泌阳县、酒泉市阿克塞哈萨克族自治县、鹤岗市工农区
湘西州永顺县、孝感市孝南区、黔南都匀市、湛江市遂溪县、资阳市乐至县、陵水黎族自治县椰林镇
江门市新会区、延边龙井市、西宁市湟中区、东方市大田镇、丽江市华坪县、重庆市大足区
宜昌市点军区、娄底市娄星区、岳阳市君山区、济南市章丘区、上海市浦东新区
大理剑川县、文昌市潭牛镇、黄石市黄石港区、淮安市盱眙县、泉州市晋江市、大同市新荣区、东莞市中堂镇、榆林市靖边县、白银市景泰县
衡阳市南岳区、淮南市凤台县、直辖县潜江市、梅州市五华县、滁州市来安县、广西贺州市平桂区
南通市如皋市、西安市莲湖区、天水市麦积区、衡阳市衡山县、定安县雷鸣镇
直辖县仙桃市、巴中市恩阳区、白山市江源区、宣城市郎溪县、连云港市东海县、盐城市射阳县、泰州市海陵区、广西贺州市八步区、红河金平苗族瑶族傣族自治县
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】