太太乐燃气灶全国统一售后维修热线号码-400查询服务网点中心
太太乐燃气灶服务24小时热线本地网点:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
太太乐燃气灶400客服售后维修预约热线电话(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
太太乐燃气灶全国售后服务热线号码
太太乐燃气灶维修上门维修附近电话号码查询400热线
维修服务环保维修理念,守护绿色家园:坚持环保维修理念,使用环保材料和工具,减少维修过程中的污染,共同守护绿色家园。
太太乐燃气灶24小时售后预约
太太乐燃气灶24小时人工客服热线
广元市昭化区、临沂市莒南县、重庆市石柱土家族自治县、新乡市卫辉市、长沙市宁乡市、内江市市中区、日照市岚山区、西宁市城东区、汕尾市陆河县、梅州市梅县区
哈尔滨市平房区、天津市武清区、杭州市上城区、东莞市茶山镇、普洱市景东彝族自治县、常州市金坛区、漳州市漳浦县、朝阳市凌源市、汕尾市陆丰市、乐东黎族自治县佛罗镇
宁波市慈溪市、晋中市左权县、昆明市寻甸回族彝族自治县、酒泉市肃北蒙古族自治县、杭州市滨江区、大兴安岭地区漠河市、儋州市新州镇
济宁市嘉祥县、广西柳州市柳城县、忻州市代县、儋州市白马井镇、邵阳市双清区、衢州市常山县、长沙市望城区、果洛玛多县、牡丹江市绥芬河市、内蒙古乌海市乌达区
怀化市会同县、荆州市江陵县、宣城市郎溪县、遵义市仁怀市、郑州市金水区、内蒙古锡林郭勒盟苏尼特右旗、平顶山市汝州市
焦作市解放区、伊春市金林区、平凉市庄浪县、淄博市临淄区、黄冈市麻城市
乐东黎族自治县千家镇、陇南市两当县、潍坊市寒亭区、景德镇市昌江区、齐齐哈尔市铁锋区、延边珲春市
河源市紫金县、泸州市合江县、烟台市龙口市、安庆市岳西县、河源市和平县、达州市开江县、厦门市海沧区、晋中市祁县、宁德市古田县、陵水黎族自治县英州镇
梅州市梅江区、广西桂林市灌阳县、朝阳市建平县、万宁市大茂镇、徐州市沛县、广西百色市右江区
许昌市建安区、南昌市安义县、洛阳市栾川县、芜湖市繁昌区、厦门市湖里区、昭通市镇雄县、太原市娄烦县、定西市陇西县、无锡市锡山区、上饶市鄱阳县
安顺市平坝区、迪庆香格里拉市、商丘市柘城县、许昌市襄城县、辽阳市太子河区、铜川市王益区、苏州市太仓市、宜春市上高县、周口市太康县、江门市开平市
宁德市福安市、定安县定城镇、毕节市纳雍县、丹东市宽甸满族自治县、咸阳市旬邑县
成都市崇州市、龙岩市上杭县、海口市琼山区、南阳市方城县、南通市如东县
广西河池市环江毛南族自治县、东营市垦利区、九江市柴桑区、太原市小店区、甘南碌曲县、琼海市阳江镇、七台河市茄子河区、深圳市南山区
北京市朝阳区、广西钦州市钦北区、信阳市潢川县、嘉兴市海盐县、儋州市光村镇、宜宾市江安县、武威市古浪县
濮阳市台前县、内蒙古赤峰市喀喇沁旗、榆林市靖边县、内蒙古兴安盟扎赉特旗、普洱市澜沧拉祜族自治县、广安市广安区
新乡市卫滨区、铜仁市石阡县、铜仁市印江县、临高县皇桐镇、枣庄市山亭区
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】