熊管家热水器报修热线咨询
熊管家热水器服务电话24小时热线是多少:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
熊管家热水器售后全国24小时客服热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
熊管家热水器全国人工售后客服服务热线电话
熊管家热水器全天客服报修热线
我们的售后服务团队将竭诚为您提供最优质的服务,期待您的每一次光临。
熊管家热水器全国统一售后维修服务热线电话全国
熊管家热水器电话24小时服务热线|售后服务电话统一客户受理中心
广州市黄埔区、恩施州巴东县、咸宁市通山县、渭南市澄城县、漳州市龙文区、常德市石门县
泰州市靖江市、随州市广水市、邵阳市双清区、昆明市呈贡区、成都市温江区
宁德市霞浦县、内蒙古鄂尔多斯市杭锦旗、丽水市庆元县、内蒙古乌兰察布市化德县、合肥市瑶海区、上饶市婺源县、楚雄牟定县、宣城市广德市
广西崇左市天等县、东莞市南城街道、牡丹江市西安区、兰州市城关区、定西市渭源县
东莞市厚街镇、绥化市望奎县、佛山市顺德区、焦作市武陟县、荆门市掇刀区、南阳市淅川县、南京市浦口区、烟台市莱州市、抚州市资溪县
揭阳市揭东区、乐东黎族自治县莺歌海镇、南平市光泽县、松原市扶余市、商洛市商南县、南京市六合区、果洛玛多县、邵阳市绥宁县、扬州市江都区
广安市前锋区、邵阳市邵东市、琼海市塔洋镇、海南共和县、广州市从化区、荆州市石首市、潍坊市诸城市、潍坊市青州市、温州市瓯海区
宁夏固原市隆德县、南充市蓬安县、楚雄大姚县、烟台市莱州市、绥化市青冈县、中山市坦洲镇、临高县新盈镇、宿州市泗县、泉州市南安市
泉州市德化县、平顶山市鲁山县、温州市龙湾区、延边敦化市、邵阳市大祥区、湘西州泸溪县
定西市漳县、澄迈县加乐镇、齐齐哈尔市昂昂溪区、宝鸡市千阳县、莆田市城厢区、扬州市高邮市、文昌市铺前镇、益阳市桃江县、红河河口瑶族自治县、广西柳州市融水苗族自治县
绵阳市梓潼县、曲靖市师宗县、宁夏中卫市中宁县、孝感市大悟县、阳泉市盂县、庆阳市宁县、齐齐哈尔市依安县、厦门市同安区、岳阳市云溪区
怒江傈僳族自治州泸水市、内蒙古赤峰市宁城县、十堰市茅箭区、焦作市武陟县、洛阳市洛龙区、烟台市牟平区、云浮市罗定市、蚌埠市禹会区
甘孜得荣县、临高县临城镇、驻马店市平舆县、三明市建宁县、重庆市开州区、白银市景泰县、延边图们市、丽水市景宁畲族自治县
重庆市忠县、郑州市登封市、张掖市山丹县、玉树玉树市、梅州市兴宁市、内蒙古呼伦贝尔市额尔古纳市、张家界市桑植县
酒泉市敦煌市、株洲市茶陵县、遵义市湄潭县、内蒙古乌海市乌达区、白沙黎族自治县元门乡、深圳市龙华区、安庆市迎江区、阿坝藏族羌族自治州理县、昌江黎族自治县叉河镇
咸宁市崇阳县、酒泉市肃北蒙古族自治县、深圳市南山区、濮阳市濮阳县、乐山市金口河区、清远市佛冈县、六安市叶集区、南平市建瓯市、肇庆市德庆县、万宁市长丰镇
红河泸西县、中山市东区街道、上海市普陀区、铜仁市玉屏侗族自治县、宜昌市夷陵区、南平市顺昌县、大庆市让胡路区、长春市宽城区、萍乡市上栗县
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】